Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-4/2019

04.07.2019 | ORIGINAL ARTICLE

A cutting force model based on compensated chip thickness in five-axis flank milling

verfasst von: Liping Wang, Xing Yuan, Hao Si, Yuzhe Liu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the five-axis flank milling process, the instantaneous undeformed chip thickness (IUCT) and the entry/exit angles vary continuously because of the complex tool path and workpiece geometry. The changes result in time-varying cutting forces in consecutive cutting operations, which are difficult to predict. This paper comprehensively considers the effects of cutter runout on the IUCT and the influence of the curved tool path on the entry/exit angles in the calculation of cutting force. A simplified IUCT model is presented based on compensated chip thickness in five-axis flank milling. Compared with the existing IUCT model, it can achieve high precision and greatly improves the calculation efficiency. Subsequently, the entry angles of surface with varied curvature are verified. Five-axis flank milling experiment for a non-developable ruled surface was conducted to verify the proposed theory. The results show that the proposed cutting force model has the ability to predict the cutter forces with a high precision and can be used in simulations and optimizations of five-axis flank milling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li ZL, Tuysuz O, Zhu LM, Altintas Y (2018) Surface form error prediction in five-axis flank milling of thin-walled parts. Int J Mach Tools Manuf 128:21–32CrossRef Li ZL, Tuysuz O, Zhu LM, Altintas Y (2018) Surface form error prediction in five-axis flank milling of thin-walled parts. Int J Mach Tools Manuf 128:21–32CrossRef
2.
Zurück zum Zitat Larue A, Anselmetti B (2003) Deviation of a machined surface in flank milling. Int J Mach Tools Manuf 43(2):129–138CrossRef Larue A, Anselmetti B (2003) Deviation of a machined surface in flank milling. Int J Mach Tools Manuf 43(2):129–138CrossRef
3.
Zurück zum Zitat Ahmadi K, Ismail F (2010) Machining chatter in flank milling. Int J Mach Tools Manuf 50:75–85CrossRef Ahmadi K, Ismail F (2010) Machining chatter in flank milling. Int J Mach Tools Manuf 50:75–85CrossRef
4.
Zurück zum Zitat Lavernhe S, Quinsat Y, Lartigue C, Brown C (2014) Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int J Adv Manuf Technol 74(1-4):393–401CrossRef Lavernhe S, Quinsat Y, Lartigue C, Brown C (2014) Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int J Adv Manuf Technol 74(1-4):393–401CrossRef
5.
Zurück zum Zitat Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51(9-12):915–924CrossRef Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51(9-12):915–924CrossRef
6.
Zurück zum Zitat Quinsat Y, Dubreuil L, Lartigue C (2017) A novel approach for in-situ detection of machining defects. Int J Adv Manuf Technol 90(5-8):1625–1638CrossRef Quinsat Y, Dubreuil L, Lartigue C (2017) A novel approach for in-situ detection of machining defects. Int J Adv Manuf Technol 90(5-8):1625–1638CrossRef
7.
Zurück zum Zitat Chen GD, Sun YZ, Zhang FH, Chen WQ (2017) Influence of ultra-precision fly cutting spindle error on surface frequency domain error formation. Int J Adv Manuf Technol 88(9):3233–3241CrossRef Chen GD, Sun YZ, Zhang FH, Chen WQ (2017) Influence of ultra-precision fly cutting spindle error on surface frequency domain error formation. Int J Adv Manuf Technol 88(9):3233–3241CrossRef
8.
Zurück zum Zitat Martelloti ME (1941) An analysis of the milling process. Trans ASME 63:677–700 Martelloti ME (1941) An analysis of the milling process. Trans ASME 63:677–700
9.
Zurück zum Zitat Martelloti ME (1945) An analysis of the milling process. Part 2: Down milling. Trans ASME 67:233–251 Martelloti ME (1945) An analysis of the milling process. Part 2: Down milling. Trans ASME 67:233–251
10.
Zurück zum Zitat Wang JJ, Liang SY (1996) Chip load kinematics in milling with radial cutter runout. Trans ASME J Eng Ind 118:111–116CrossRef Wang JJ, Liang SY (1996) Chip load kinematics in milling with radial cutter runout. Trans ASME J Eng Ind 118:111–116CrossRef
11.
Zurück zum Zitat Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mater Proc Technol 113:378–384CrossRef Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mater Proc Technol 113:378–384CrossRef
12.
Zurück zum Zitat Kumanchik LM, Schmitz TL (2007) Improved analytical chip thickness model for milling. Precis Eng 31(3):317–324CrossRef Kumanchik LM, Schmitz TL (2007) Improved analytical chip thickness model for milling. Precis Eng 31(3):317–324CrossRef
13.
Zurück zum Zitat Diez E, Perez H, Guzman M, Vizan A (2013) An improved methodology for the experimental evaluation of tool runout in peripheral milling. Int J Adv Manuf Technol 65(1-4):283–293CrossRef Diez E, Perez H, Guzman M, Vizan A (2013) An improved methodology for the experimental evaluation of tool runout in peripheral milling. Int J Adv Manuf Technol 65(1-4):283–293CrossRef
14.
Zurück zum Zitat Qi H, Tian Y, Zhang D (2013) Machining forces prediction for peripheral milling of low-rigidity component with curved geometry. Int J Adv Manuf Technol 64(9-12):1599–1610CrossRef Qi H, Tian Y, Zhang D (2013) Machining forces prediction for peripheral milling of low-rigidity component with curved geometry. Int J Adv Manuf Technol 64(9-12):1599–1610CrossRef
15.
Zurück zum Zitat He GY, Ma WK, Yu GM, Lang A (2015) Modeling and experimental validation of cutting forces in five-axis ball-end milling based on true tooth trajectory. Int J Adv Manuf Technol 78(1-4):189–197CrossRef He GY, Ma WK, Yu GM, Lang A (2015) Modeling and experimental validation of cutting forces in five-axis ball-end milling based on true tooth trajectory. Int J Adv Manuf Technol 78(1-4):189–197CrossRef
16.
Zurück zum Zitat Zhu R, Kapoor SG, DeVor RE (2001) Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. Trans ASME J Manuf Sci Eng 123:369–379CrossRef Zhu R, Kapoor SG, DeVor RE (2001) Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. Trans ASME J Manuf Sci Eng 123:369–379CrossRef
17.
Zurück zum Zitat Huang T, Zhang XM, Ding H (2013) Decoupled chip thickness calculation model for cutting force prediction in five-axis ball-end milling. Int J Adv Manuf Technol 69:1203–1217CrossRef Huang T, Zhang XM, Ding H (2013) Decoupled chip thickness calculation model for cutting force prediction in five-axis ball-end milling. Int J Adv Manuf Technol 69:1203–1217CrossRef
18.
Zurück zum Zitat Sun YW, Guo Q (2011) Numerical simulation and prediction of cutting forces in five-axis milling process with cutter runout. Int J Mach Tools Manuf 51:806–815CrossRef Sun YW, Guo Q (2011) Numerical simulation and prediction of cutting forces in five-axis milling process with cutter runout. Int J Mach Tools Manuf 51:806–815CrossRef
19.
Zurück zum Zitat Zhang X, Zhang J, Pang B, Zhao WH (2016) An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int J Mach Tools Manuf 109:26–36CrossRef Zhang X, Zhang J, Pang B, Zhao WH (2016) An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int J Mach Tools Manuf 109:26–36CrossRef
20.
Zurück zum Zitat Guo Q, Zhao B, Yan J, Zhao W (2018) Cutting force modeling for non-uniform helix tools based on compensated chip thickness in five-axis flank milling process. Precis Eng 51:659–681CrossRef Guo Q, Zhao B, Yan J, Zhao W (2018) Cutting force modeling for non-uniform helix tools based on compensated chip thickness in five-axis flank milling process. Precis Eng 51:659–681CrossRef
21.
Zurück zum Zitat Desai KA, Agarwal PK, Rao PVM (2009) Process geometry modeling with cutter runout for milling of curved surfaces. Int J Mach Tools Manuf 49(12-13):1015–1028CrossRef Desai KA, Agarwal PK, Rao PVM (2009) Process geometry modeling with cutter runout for milling of curved surfaces. Int J Mach Tools Manuf 49(12-13):1015–1028CrossRef
22.
Zurück zum Zitat Si H, Wang LP, Zhang J, Liu ZK (2017) A solid-discrete-based method for extracting the cutter-workpiece engagement in five-axis flank milling. Int J Adv Manuf Technol 94(9-12):3641–3653CrossRef Si H, Wang LP, Zhang J, Liu ZK (2017) A solid-discrete-based method for extracting the cutter-workpiece engagement in five-axis flank milling. Int J Adv Manuf Technol 94(9-12):3641–3653CrossRef
23.
Zurück zum Zitat Wan M, Lu MS, Zhang WH, Yang Y, Li Y (2011) A new method for identifying the cutter runout parameters in flat end milling process. Mater Sci Forum 697-698:71–74CrossRef Wan M, Lu MS, Zhang WH, Yang Y, Li Y (2011) A new method for identifying the cutter runout parameters in flat end milling process. Mater Sci Forum 697-698:71–74CrossRef
24.
Zurück zum Zitat Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47(11):1767–1776CrossRef Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47(11):1767–1776CrossRef
25.
Zurück zum Zitat Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comput Aided Des 35(4):375–382CrossRef Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comput Aided Des 35(4):375–382CrossRef
Metadaten
Titel
A cutting force model based on compensated chip thickness in five-axis flank milling
verfasst von
Liping Wang
Xing Yuan
Hao Si
Yuzhe Liu
Publikationsdatum
04.07.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-4/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04034-0

Weitere Artikel der Ausgabe 1-4/2019

The International Journal of Advanced Manufacturing Technology 1-4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.