Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

A Deep Learning-Based Methodology for Detecting and Visualizing Continuous Gravitational Waves

verfasst von : Emmanuel Pintelas, Ioannis E. Livieris, Panagiotis Pintelas

Erschienen in: Artificial Intelligence Applications and Innovations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the Gravitational Waves’ initial direct detection, a veil of mystery from the Universe has been lifted, ushering a new era of intriguing physics, as-tronomy, and astrophysics research. Unfortunately, since then, not much progress has been reported, because so far all of the detected Gravitational Waves fell only into the Binary bursting wave type (B-GWs), which are cre-ated via spinning binary compact objects such as black holes. Nowadays, as-tronomy scientists seek to detect a new type of gravitational waves called: Continuous Gravitational Waves (C-GWs). Unlike the complicated burst na-ture of B-GWs, C-GWs have elegant and much simpler form, being able to provide higher quality of information for the Universe exploration. Never-theless, C-GWs are much weaker comparing to the B-GWs, which makes them considerably harder to be detected. For this task, we propose a novel Deep-Learning-based methodology, being sensitive enough for detecting and visualizing C-GWs, based on Short-Time-Fourier data provided by LIGO. Based on extensive experimental simulations, our approach significantly outperformed the state-of-the-art approaches, for every applied experimental configuration, revealing the efficiency of the proposed methodology. Our expectation is that this work can potentially assist scientists to improve their detection sensitivity, leading to new Astrophysical discoveries, via the incor-poration of Data-Mining and Deep-Learning sciences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For visualization purposes, we averaged the multi channels spectrograms to 1-channel.
 
Literatur
1.
Zurück zum Zitat Abbott, B.P., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Letters 119(16), 161101 (2017) Abbott, B.P., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Letters 119(16), 161101 (2017)
2.
Zurück zum Zitat Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)MathSciNetCrossRef Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat Abbott, B.P., Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., et al.: All-sky search for continuous gravitational waves from isolated neutron stars using advanced LIGO O2 data. Phys. Rev. D 100(2), 102008 (2019) Abbott, B.P., Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., et al.: All-sky search for continuous gravitational waves from isolated neutron stars using advanced LIGO O2 data. Phys. Rev. D 100(2), 102008 (2019)
4.
Zurück zum Zitat Abbott, B.P., et al.: Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity 34(4), 044001 (2017) Abbott, B.P., et al.: Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity 34(4), 044001 (2017)
5.
Zurück zum Zitat Abbott, B., et al.: LIGO: the laser interferometer gravitational-wave observatory. Reports Progress Phys. 72(7), 076901 (2009) Abbott, B., et al.: LIGO: the laser interferometer gravitational-wave observatory. Reports Progress Phys. 72(7), 076901 (2009)
6.
Zurück zum Zitat Abbott, R., et al.: Searches for gravitational waves from known pulsars at two harmonics in the second and third LIGO-Virgo observing runs. Astrophys J 935(1), 1 (2022)CrossRef Abbott, R., et al.: Searches for gravitational waves from known pulsars at two harmonics in the second and third LIGO-Virgo observing runs. Astrophys J 935(1), 1 (2022)CrossRef
7.
Zurück zum Zitat Byrne, C.L.: Signal Processing: a mathematical approach. CRC Press (2014) Byrne, C.L.: Signal Processing: a mathematical approach. CRC Press (2014)
8.
Zurück zum Zitat Caprini, C., Figueroa, D.G.: Cosmological backgrounds of gravitational waves. Classical Quant. Gravity 35(16), 163001 (2018) Caprini, C., Figueroa, D.G.: Cosmological backgrounds of gravitational waves. Classical Quant. Gravity 35(16), 163001 (2018)
9.
Zurück zum Zitat George, D., Huerta, E.A.: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018)CrossRef George, D., Huerta, E.A.: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018)CrossRef
10.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
11.
Zurück zum Zitat Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017) Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
12.
Zurück zum Zitat Koonce, B., Koonce, B.: Efficientnet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, pp. 109–123 (2021) Koonce, B., Koonce, B.: Efficientnet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, pp. 109–123 (2021)
13.
Zurück zum Zitat Królak, A., Patil, M.: The first detection of gravitational waves. Universe 3(3), 59 (2017)CrossRef Królak, A., Patil, M.: The first detection of gravitational waves. Universe 3(3), 59 (2017)CrossRef
14.
Zurück zum Zitat Livieris, I.E., Pintelas, E., Kiriakidou, N., Stavroyiannis, S.: An advanced deep learning model for short-term forecasting us natural gas price and movement. In: Artificial Intelligence Applications and Innovations, pp. 165–176. Springer (2020) Livieris, I.E., Pintelas, E., Kiriakidou, N., Stavroyiannis, S.: An advanced deep learning model for short-term forecasting us natural gas price and movement. In: Artificial Intelligence Applications and Innovations, pp. 165–176. Springer (2020)
15.
Zurück zum Zitat Livieris, I.E., Pintelas, E., Pintelas, P.: A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 32, 17351–17360 (2020)CrossRef Livieris, I.E., Pintelas, E., Pintelas, P.: A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 32, 17351–17360 (2020)CrossRef
16.
Zurück zum Zitat Livieris, I.E., Pintelas, P.: An adaptive nonmonotone active set-weight constrained-neural network training algorithm. Neurocomputing 360, 294–303 (2019)CrossRef Livieris, I.E., Pintelas, P.: An adaptive nonmonotone active set-weight constrained-neural network training algorithm. Neurocomputing 360, 294–303 (2019)CrossRef
18.
Zurück zum Zitat Lu, L., Zheng, Y., Carneiro, G., Yang, L.: Deep learning and convolutional neural networks for medical image computing. Adv. Comput. Vis. Pattern Recognit. 10, 978–3 (2017) Lu, L., Zheng, Y., Carneiro, G., Yang, L.: Deep learning and convolutional neural networks for medical image computing. Adv. Comput. Vis. Pattern Recognit. 10, 978–3 (2017)
19.
Zurück zum Zitat Park, D.S., et al.: Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019) Park, D.S., et al.: Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:​1904.​08779 (2019)
20.
Zurück zum Zitat Pintelas, E., Liaskos, M., Livieris, I.E., Kotsiantis, S., Pintelas, P.: A novel explainable image classification framework: Case study on skin cancer and plant disease prediction. Neural Comput. Appl. 33(22), 15171–15189 (2021)CrossRef Pintelas, E., Liaskos, M., Livieris, I.E., Kotsiantis, S., Pintelas, P.: A novel explainable image classification framework: Case study on skin cancer and plant disease prediction. Neural Comput. Appl. 33(22), 15171–15189 (2021)CrossRef
21.
Zurück zum Zitat Pintelas, E., Livieris, I.E., Pintelas, P.: A grey-box ensemble model exploiting black-box accuracy and white-box intrinsic interpretability. Algorithms 13(1), 17 (2020)MathSciNetCrossRef Pintelas, E., Livieris, I.E., Pintelas, P.: A grey-box ensemble model exploiting black-box accuracy and white-box intrinsic interpretability. Algorithms 13(1), 17 (2020)MathSciNetCrossRef
22.
Zurück zum Zitat Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Selected Topics Signal Process. 13(2), 206–219 (2019)CrossRef Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep learning for audio signal processing. IEEE J. Selected Topics Signal Process. 13(2), 206–219 (2019)CrossRef
23.
24.
Zurück zum Zitat Riles, K.: Recent searches for continuous gravitational waves. Mod. Phys. Lett. A 32(39), 1730035 (2017)CrossRef Riles, K.: Recent searches for continuous gravitational waves. Mod. Phys. Lett. A 32(39), 1730035 (2017)CrossRef
25.
Zurück zum Zitat Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020)CrossRef Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020)CrossRef
26.
Zurück zum Zitat Rothman, T.: The secret history of gravitational waves: contrary to popular belief, einstein was not the first to conceive of gravitational waves-but he was, eventually, the first to get the concept right. Am. Sci. 106(2), 96–104 (2018)CrossRef Rothman, T.: The secret history of gravitational waves: contrary to popular belief, einstein was not the first to conceive of gravitational waves-but he was, eventually, the first to get the concept right. Am. Sci. 106(2), 96–104 (2018)CrossRef
27.
Zurück zum Zitat Schäfer, M.B., Ohme, F., Nitz, A.H.: Detection of gravitational-wave signals from binary neutron star mergers using machine learning. Physical Review D 102(6), 063015 (2020)CrossRef Schäfer, M.B., Ohme, F., Nitz, A.H.: Detection of gravitational-wave signals from binary neutron star mergers using machine learning. Physical Review D 102(6), 063015 (2020)CrossRef
28.
Zurück zum Zitat Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017) Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
29.
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
30.
Zurück zum Zitat Véstias, M.P.: Convolutional neural network. In: Encyclopedia of Information Science and Technology, Fifth Edition, pp. 12–26. IGI Global (2021) Véstias, M.P.: Convolutional neural network. In: Encyclopedia of Information Science and Technology, Fifth Edition, pp. 12–26. IGI Global (2021)
31.
Zurück zum Zitat Wei, W., Huerta, E.: Deep learning for gravitational wave forecasting of neutron star mergers. Phys. Lett. B 816, 136185 (2021)MathSciNetCrossRef Wei, W., Huerta, E.: Deep learning for gravitational wave forecasting of neutron star mergers. Phys. Lett. B 816, 136185 (2021)MathSciNetCrossRef
32.
Zurück zum Zitat Zhang, H., et al.: Resnest: Split-attention networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022) Zhang, H., et al.: Resnest: Split-attention networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2736–2746 (2022)
Metadaten
Titel
A Deep Learning-Based Methodology for Detecting and Visualizing Continuous Gravitational Waves
verfasst von
Emmanuel Pintelas
Ioannis E. Livieris
Panagiotis Pintelas
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34111-3_1

Premium Partner