Skip to main content

2018 | OriginalPaper | Buchkapitel

10. A Design Approach for Cooling Gas Turbine Intake Air with Solar-Assisted Absorption Cooling Cycle

verfasst von : Umit Unver, Gokçen Ozkara, Elif Merve Bahar

Erschienen in: The Role of Exergy in Energy and the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Republic of Turkey’s current energy policy encourages households, industries, and energy production facilities to be energy wise. In this chapter, the Bursa Ovaakça power plant, which is one of the largest power plants of Turkey, was investigated with regard to boosting production. The scope of this chapter was to design a solar-assisted absorption cooling plant for cooling the intake air of gas turbines. The aim of this chapter is to achieve an efficiency augmentation in gas turbines through a solar energy-assisted absorption cooling system. The COP of the designed absorption cooling system has been calculated to be 0.75, and the utilization factor is 28.6.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Şöhret Y, Açıkkalp E, Hepbasli A, Karakoc TH (2015) Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy 90:1219–1228CrossRef Şöhret Y, Açıkkalp E, Hepbasli A, Karakoc TH (2015) Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy 90:1219–1228CrossRef
5.
Zurück zum Zitat Khaljani M, Khoshbakhti Saray R, Bahlouli K (2015) Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Convers Manag 97:154–165CrossRef Khaljani M, Khoshbakhti Saray R, Bahlouli K (2015) Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Convers Manag 97:154–165CrossRef
6.
Zurück zum Zitat Ahmadi P, Dincer I, Rosen MA (2011) Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy 36:5886–5898CrossRef Ahmadi P, Dincer I, Rosen MA (2011) Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy 36:5886–5898CrossRef
7.
Zurück zum Zitat Kotowicz J, Job M, Brzeczek M (2015) The characteristics of ultramodern combined cycle power plants. Energy 92:197–211CrossRef Kotowicz J, Job M, Brzeczek M (2015) The characteristics of ultramodern combined cycle power plants. Energy 92:197–211CrossRef
8.
Zurück zum Zitat Ahmadi P, Dincer I (2011) Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl Therm Eng 31:2529–2540CrossRef Ahmadi P, Dincer I (2011) Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl Therm Eng 31:2529–2540CrossRef
11.
Zurück zum Zitat Karaali R, Öztürk IT (2017) Efficiency improvement of gas turbine cogeneration systems. Tech Gaz 24(Suppl. 1):21–27 Karaali R, Öztürk IT (2017) Efficiency improvement of gas turbine cogeneration systems. Tech Gaz 24(Suppl. 1):21–27
12.
Zurück zum Zitat Karaali R, Öztürk IT (2017) Performance analyses of gas turbine cogeneration plants. J Therm Sci Technol 37(1):25–33 Karaali R, Öztürk IT (2017) Performance analyses of gas turbine cogeneration plants. J Therm Sci Technol 37(1):25–33
14.
Zurück zum Zitat Karaali R, Öztürk IT (2015) Thermoeconomic analyses of steam injected gas turbine cogeneration cycles. Acta Phys Pol A 128(2B):B279–B281CrossRef Karaali R, Öztürk IT (2015) Thermoeconomic analyses of steam injected gas turbine cogeneration cycles. Acta Phys Pol A 128(2B):B279–B281CrossRef
15.
Zurück zum Zitat De S, Al Zubaidy A (2011) Gas turbine performance at varying ambient temperature. Appl Therm Eng 31:2735–2739CrossRef De S, Al Zubaidy A (2011) Gas turbine performance at varying ambient temperature. Appl Therm Eng 31:2735–2739CrossRef
16.
Zurück zum Zitat Unver U, Kılıç M (2007) Second law based Thermoeconomıc Analysıs of Combıned cycle power plants Consıderıng the effects of Envıronmental temperature and load Varıatıons. Int J of Energy Res. (doi: 10.1002/er.1239) 31(2):148–157CrossRef Unver U, Kılıç M (2007) Second law based Thermoeconomıc Analysıs of Combıned cycle power plants Consıderıng the effects of Envıronmental temperature and load Varıatıons. Int J of Energy Res. (doi: 10.1002/er.1239) 31(2):148–157CrossRef
18.
Zurück zum Zitat Unver U, Kılıç M (2017) Influence of environmental temperature on exergetic parameters of a combined cycle power plant. Int J Exergy 22(1):73–88CrossRef Unver U, Kılıç M (2017) Influence of environmental temperature on exergetic parameters of a combined cycle power plant. Int J Exergy 22(1):73–88CrossRef
20.
Zurück zum Zitat Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87:663–677CrossRef Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87:663–677CrossRef
21.
Zurück zum Zitat Alhazmy MM, Najjar YSH (2004) Augmentation of gas turbine performance using air coolers. Appl Therm Eng 24:415–429CrossRef Alhazmy MM, Najjar YSH (2004) Augmentation of gas turbine performance using air coolers. Appl Therm Eng 24:415–429CrossRef
22.
Zurück zum Zitat Zurigat YH, Dawoud B, Bortmany J (2006) On the technical feasibility of gas turbine inlet air cooling utilizing thermal energy storage. Int J Energy Res 30:291–305CrossRef Zurigat YH, Dawoud B, Bortmany J (2006) On the technical feasibility of gas turbine inlet air cooling utilizing thermal energy storage. Int J Energy Res 30:291–305CrossRef
23.
Zurück zum Zitat Al-Ibrahim AM, Varnham A (2010) A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl Therm Eng 30:1879–1888CrossRef Al-Ibrahim AM, Varnham A (2010) A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl Therm Eng 30:1879–1888CrossRef
25.
Zurück zum Zitat Najjar YSH (1996) Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system. Appl Therm Eng 16(2):163–173CrossRef Najjar YSH (1996) Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system. Appl Therm Eng 16(2):163–173CrossRef
27.
Zurück zum Zitat Yang C, Yang Z, Cai R (2009) Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy 86:848–856CrossRef Yang C, Yang Z, Cai R (2009) Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy 86:848–856CrossRef
28.
Zurück zum Zitat Mahmoudi SMS, Zare V, Rnajbar F, Farshi LG (2009) Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J Appl Sci 9(13):2399–2407CrossRef Mahmoudi SMS, Zare V, Rnajbar F, Farshi LG (2009) Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J Appl Sci 9(13):2399–2407CrossRef
30.
Zurück zum Zitat Eicker U, Pietruschka D (2009) Design and performance of solar powered absorption cooling systems in office buildings. Energ Buildings 41:81–91CrossRef Eicker U, Pietruschka D (2009) Design and performance of solar powered absorption cooling systems in office buildings. Energ Buildings 41:81–91CrossRef
31.
Zurück zum Zitat Kaynaklı Ö, Yamankaradeniz R (2003) Absorpsiyonlu Soğutma Sistemlerinde Kullanılan Eşanjörlerin Sistemin Performansına Etkisi. Uludag Univ J Eng Facul 8(1):111–120 Kaynaklı Ö, Yamankaradeniz R (2003) Absorpsiyonlu Soğutma Sistemlerinde Kullanılan Eşanjörlerin Sistemin Performansına Etkisi. Uludag Univ J Eng Facul 8(1):111–120
32.
Zurück zum Zitat Atmaca İ, Yiğit A, Kilic M (2002) The effect of input temperatures on the absorber parameters. Int Comn Heat Mass Transf 29(8):1177–1186CrossRef Atmaca İ, Yiğit A, Kilic M (2002) The effect of input temperatures on the absorber parameters. Int Comn Heat Mass Transf 29(8):1177–1186CrossRef
33.
Zurück zum Zitat Atmaca İ, Yiğit A (2003) Simulation of solar – powered absorption cooling system. Renew Energy 28:1277–1293CrossRef Atmaca İ, Yiğit A (2003) Simulation of solar – powered absorption cooling system. Renew Energy 28:1277–1293CrossRef
37.
Zurück zum Zitat Calise F, Libertini L, Vicidomini M (2017) Design and optimization of a novel solar cooling system for combined cycle power plants. J Clean Prod 161:1385–1403CrossRef Calise F, Libertini L, Vicidomini M (2017) Design and optimization of a novel solar cooling system for combined cycle power plants. J Clean Prod 161:1385–1403CrossRef
38.
Zurück zum Zitat Bassily AM (2004) Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Appl Energy 77(3):249–272CrossRef Bassily AM (2004) Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Appl Energy 77(3):249–272CrossRef
39.
Zurück zum Zitat Unver U, Ozkara G, Kalyoncu EM (2017) Design of a renewable assisted absorption cooling system for gas turbine intake air cooling. 9th International Exergy, Energy and Environment Symposium (IEEES-9), May 14–17, 2017, Split, Croatia. Proceeding Book in Sandro Nizetic Eds. pp 811–816 Unver U, Ozkara G, Kalyoncu EM (2017) Design of a renewable assisted absorption cooling system for gas turbine intake air cooling. 9th International Exergy, Energy and Environment Symposium (IEEES-9), May 14–17, 2017, Split, Croatia. Proceeding Book in Sandro Nizetic Eds. pp 811–816
Metadaten
Titel
A Design Approach for Cooling Gas Turbine Intake Air with Solar-Assisted Absorption Cooling Cycle
verfasst von
Umit Unver
Gokçen Ozkara
Elif Merve Bahar
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-89845-2_10