Skip to main content
Erschienen in: Wireless Networks 3/2020

16.11.2018

A distributed energy-efficient approach for hole repair in wireless sensor networks

verfasst von: Neda Nilsaz Dezfouli, Hamid Barati

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks consisting of numerous nodes function in such a manner that each node that collects data from its physical environment, conveys them to the base station for rigorous analysis. Maintaining the functional coverage, energy consumption and the lifetime are among the most challenging factors for WSN. The aim of this paper is to provide an effective coverage with a simultaneous reduction in energy consumption using mobile nodes and evolutionary firefly algorithm. The methodology involves dividing network area into equal cells though smaller size, in order to facilitate the estimation of the physical coverage. In areas with desirable and sufficient coverage, the operational scheduling of nodes is set in such a manner to activate some sensors to ensure necessary coverage and deactivate others. This, to a great extent, decreases the demand for energy. Under the circumstances where the cells are deprived of appropriate or sufficient coverage, mobile nodes are used to improve the coverage. This is achieved by using firefly algorithm to determine the optimum deployment of mobile nodes to perform the job. Results of simulation show that the proposed method has greater superiority over its comparative techniques, particularly on aspects such as the rate of network field area, energy consumption and network lifetime to mention a few.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947. https://doi.org/10.1109/JSAC.2017.2720898.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947. https://​doi.​org/​10.​1109/​JSAC.​2017.​2720898.CrossRef
3.
Zurück zum Zitat Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE transactions on communications, 66(4), 1705–1716. Retrieved from arXiv:1710.02942.CrossRef Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE transactions on communications, 66(4), 1705–1716. Retrieved from arXiv:​1710.​02942.CrossRef
4.
Zurück zum Zitat Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef
5.
Zurück zum Zitat Torkestani, J. (2013). An adaptive energy-efficient area coverage algorithm for wireless sensor networks. Ad Hoc Networks, 11(6), 1655–1666.CrossRef Torkestani, J. (2013). An adaptive energy-efficient area coverage algorithm for wireless sensor networks. Ad Hoc Networks, 11(6), 1655–1666.CrossRef
8.
Zurück zum Zitat Chen, A., Kumar, S., & Lai, T. H. (2010). Local barrier coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(4), 491–504.CrossRef Chen, A., Kumar, S., & Lai, T. H. (2010). Local barrier coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(4), 491–504.CrossRef
9.
Zurück zum Zitat Li, M., Cheng, W., & Liu, K. (2011). Sweep coverage with mobile sensors. IEEE Transactions on Mobile Computing, 10(11), 1534–1545.CrossRef Li, M., Cheng, W., & Liu, K. (2011). Sweep coverage with mobile sensors. IEEE Transactions on Mobile Computing, 10(11), 1534–1545.CrossRef
11.
Zurück zum Zitat Rakavi, A., Manikandan, M. S. K., & Hariharan, K. (2015, March). Grid based mobile sensor node deployment for improving area coverage in wireless sensor networks. In 2015 3rd international conference on signal processing, communication and networking (ICSCN) (pp. 1–5). IEEE. Rakavi, A., Manikandan, M. S. K., & Hariharan, K. (2015, March). Grid based mobile sensor node deployment for improving area coverage in wireless sensor networks. In 2015 3rd international conference on signal processing, communication and networking (ICSCN) (pp. 1–5). IEEE.
12.
Zurück zum Zitat Xiong, Z., Wang, B., & Wang, Z. (2016). Priority-based greedy scheduling for confident information coverage in energy harvesting wireless sensor networks. In Proceedings—11th international conference on mobile ad-hoc and sensor networks, MSN 2015 (pp. 18–22). IEEE. https://doi.org/10.1109/MSN.2015.20. Xiong, Z., Wang, B., & Wang, Z. (2016). Priority-based greedy scheduling for confident information coverage in energy harvesting wireless sensor networks. In Proceedings—11th international conference on mobile ad-hoc and sensor networks, MSN 2015 (pp. 18–22). IEEE. https://​doi.​org/​10.​1109/​MSN.​2015.​20.
13.
Zurück zum Zitat Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.CrossRef Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.CrossRef
16.
17.
Zurück zum Zitat Das, P. P., Chakraborty, N., & Allayear, S. M. (2015). Optimal coverage of wireless sensor network using termite colony optimization algorithm. In 2015 international conference on electrical engineering and information communication technology (ICEEICT) (pp. 1–6). IEEE. Das, P. P., Chakraborty, N., & Allayear, S. M. (2015). Optimal coverage of wireless sensor network using termite colony optimization algorithm. In 2015 international conference on electrical engineering and information communication technology (ICEEICT) (pp. 1–6). IEEE.
22.
Zurück zum Zitat Zou, Y., & Chakrabarty, K. (2003, March). Sensor deployment and target localization based on virtual forces. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 2, pp. 1293–1303). IEEE. Zou, Y., & Chakrabarty, K. (2003, March). Sensor deployment and target localization based on virtual forces. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 2, pp. 1293–1303). IEEE.
23.
Zurück zum Zitat Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (LNCS, Vol. 5792, pp. 169–178). Springer. https://doi.org/10.1007/978-3-642-04944-6_14. Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (LNCS, Vol. 5792, pp. 169–178). Springer. https://​doi.​org/​10.​1007/​978-3-642-04944-6_​14.
Metadaten
Titel
A distributed energy-efficient approach for hole repair in wireless sensor networks
verfasst von
Neda Nilsaz Dezfouli
Hamid Barati
Publikationsdatum
16.11.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1867-0

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt