Skip to main content

2014 | OriginalPaper | Buchkapitel

A General Framework for Multiscale Modeling of Tumor–Immune System Interactions

verfasst von : Marina Dolfin, Mirosław Lachowicz, Zuzanna Szymańska

Erschienen in: Mathematical Oncology 2013

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we review methods that allow the construction of a consistent set of models that may describe the interactions between a tumor and the immune system on microscopic, mesoscopic, and macroscopic scales. The presented structures may be a basis for a description on the sub–cellular, cellular, and macroscopic levels. Important open problems are indicated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 7(31), 1–22 (2012) M. Al-Tameemi, M. Chaplain, A. d’Onofrio, Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 7(31), 1–22 (2012)
2.
Zurück zum Zitat L. Arlotti, N. Bellomo, E. De Angelis, M. Lachowicz, Generalized Kinetic Models in Applied Sciences ( World Scienctific, New Jersay (2003) L. Arlotti, N. Bellomo, E. De Angelis, M. Lachowicz, Generalized Kinetic Models in Applied Sciences ( World Scienctific, New Jersay (2003)
3.
Zurück zum Zitat L. Arlotti, N. Bellomo, M. Lachowicz, Kinetic equations modelling population dynamics. Transport Theory Statist. Phys. 29, 125–139 (2000)MathSciNetCrossRefMATH L. Arlotti, N. Bellomo, M. Lachowicz, Kinetic equations modelling population dynamics. Transport Theory Statist. Phys. 29, 125–139 (2000)MathSciNetCrossRefMATH
4.
Zurück zum Zitat L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz, N. Bellomo, On a class of integro–differential equations modeling complex systems with nonlinear interactions. Appl. Math. Lett. 25, 490–495 (2012)MathSciNetCrossRefMATH L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz, N. Bellomo, On a class of integro–differential equations modeling complex systems with nonlinear interactions. Appl. Math. Lett. 25, 490–495 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Multiscale biological tissue models and flux–limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)MathSciNetCrossRefMATH N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Multiscale biological tissue models and flux–limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)MathSciNetCrossRefMATH
6.
Zurück zum Zitat N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives. Math. Models Methods Appl. Sci. 22, 1130001 (2012)MathSciNetCrossRef N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives. Math. Models Methods Appl. Sci. 22, 1130001 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Modelling chemotaxis from L 2–closure moments in kinetic theory of active particles. Discrete Contin. Dyn. Systems B 18, 847–863 (2013)MathSciNetCrossRefMATH N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Modelling chemotaxis from L 2–closure moments in kinetic theory of active particles. Discrete Contin. Dyn. Systems B 18, 847–863 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives. Physics of Life, Reviews 8, 1–18 (2011)CrossRef Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives. Physics of Life, Reviews 8, 1–18 (2011)CrossRef
9.
Zurück zum Zitat N. Bellomo, G. Forni, Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20, 107–122 (1994)CrossRefMATH N. Bellomo, G. Forni, Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20, 107–122 (1994)CrossRefMATH
10.
Zurück zum Zitat N. Bellomo, G. Forni, Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems. Math. Models Methods Appl. Sci. 16, 1001–1029 (2006)MathSciNetCrossRefMATH N. Bellomo, G. Forni, Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems. Math. Models Methods Appl. Sci. 16, 1001–1029 (2006)MathSciNetCrossRefMATH
11.
Zurück zum Zitat N. Bellomo, D. Knopoff, J. Soler, On the difficult interplay between life, “complexity” and mathematical sciences. Math. Models Methods Appl. Sci. 23, 1861–1913 (2013)MathSciNetCrossRefMATH N. Bellomo, D. Knopoff, J. Soler, On the difficult interplay between life, “complexity” and mathematical sciences. Math. Models Methods Appl. Sci. 23, 1861–1913 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat N. Bellomo, M. Lachowicz, J. Polewczak, G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation (World Scientific, Singapore 1991)CrossRefMATH N. Bellomo, M. Lachowicz, J. Polewczak, G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation (World Scientific, Singapore 1991)CrossRefMATH
13.
Zurück zum Zitat N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: Selected topics, speculations and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefMATH N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: Selected topics, speculations and perspectives. Math. Models Methods Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefMATH
14.
Zurück zum Zitat N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumour evolution and its interaction with immune system. Math. Comput. Model. 32, 413–452 (2000)MathSciNetCrossRefMATH N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumour evolution and its interaction with immune system. Math. Comput. Model. 32, 413–452 (2000)MathSciNetCrossRefMATH
15.
Zurück zum Zitat N., Bellomo, A. Bellouquid, E. de Angelis, The modelling of immune competition by generalised kinetic (Boltzmann) models: review and research perspectives. Math. Comput. Modelling 37, 65–86 (2003) N., Bellomo, A. Bellouquid, E. de Angelis, The modelling of immune competition by generalised kinetic (Boltzmann) models: review and research perspectives. Math. Comput. Modelling 37, 65–86 (2003)
16.
Zurück zum Zitat M., Bodnar, U., Foryś, Z. Szymańska, Model of AIDS–related tumour with time delay, Appl. Math. (Warsaw) 36, 263–278 (2009) M., Bodnar, U., Foryś, Z. Szymańska, Model of AIDS–related tumour with time delay, Appl. Math. (Warsaw) 36, 263–278 (2009)
17.
Zurück zum Zitat V. Capasso, D. Morale, in Rescaling Stochastic Processes: Asymptotics. eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 91–146. V. Capasso, D. Morale, in Rescaling Stochastic Processes: Asymptotics. eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 91–146.
18.
Zurück zum Zitat Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27, 574–603 (2009)MathSciNetCrossRefMATH Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27, 574–603 (2009)MathSciNetCrossRefMATH
19.
Zurück zum Zitat C. Cercignani, R. Illner, Pulvirenti, M. The Mathematical Theory of Dilute Gases (Springer, New York 1994) C. Cercignani, R. Illner, Pulvirenti, M. The Mathematical Theory of Dilute Gases (Springer, New York 1994)
20.
Zurück zum Zitat N. Champagnat, R. Ferrière, S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Th. Popul. Biol. 69, 297–321 (2006)CrossRefMATH N. Champagnat, R. Ferrière, S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Th. Popul. Biol. 69, 297–321 (2006)CrossRefMATH
21.
Zurück zum Zitat N. Champagnat, R. Ferrière, S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution. Stochastic Models 24 2–44 (2008)MathSciNetCrossRefMATH N. Champagnat, R. Ferrière, S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution. Stochastic Models 24 2–44 (2008)MathSciNetCrossRefMATH
22.
Zurück zum Zitat M.A.J. Chaplain, in Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation, eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 147–200. M.A.J. Chaplain, in Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation, eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math. vol. 1940, (Springer, Berlin 2008) pp. 147–200.
23.
Zurück zum Zitat M.A.J. Chaplain, M. Lachowicz, Z. Szymańska, D. Wrzosek, Mathematical modelling of cancer invasion: The importance of cell–cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 24, 719–743 (2011)CrossRef M.A.J. Chaplain, M. Lachowicz, Z. Szymańska, D. Wrzosek, Mathematical modelling of cancer invasion: The importance of cell–cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 24, 719–743 (2011)CrossRef
24.
Zurück zum Zitat M. Cobbold, H. De La Pea, A. Norris, J.M. Polefrone, J. Qian, A.M. English, K.L. Cummings, S. Penny, J.E. Turner, J. Cottine, J.G. Abelin, S.A. Malaker, A.L. Zarling, H.W. Huang, O. Goodyear, S.D. Freeman, J. Shabanowitz, G. Pratt, C. Craddock, M.E Williams, D.F. Hunt, V.H. Engelhard, MHC Class I-Associated Phosphopeptides Are the Targets of Memory-like Immunity in Leukemia. Sci. Transl. Med. 203, 203–125 (2013) M. Cobbold, H. De La Pea, A. Norris, J.M. Polefrone, J. Qian, A.M. English, K.L. Cummings, S. Penny, J.E. Turner, J. Cottine, J.G. Abelin, S.A. Malaker, A.L. Zarling, H.W. Huang, O. Goodyear, S.D. Freeman, J. Shabanowitz, G. Pratt, C. Craddock, M.E Williams, D.F. Hunt, V.H. Engelhard, MHC Class I-Associated Phosphopeptides Are the Targets of Memory-like Immunity in Leukemia. Sci. Transl. Med. 203, 203–125 (2013)
25.
Zurück zum Zitat Criaco, D., Dolfin, M.,. Restuccia, L: Approximate smooth solution pf a mathematical model for the activation and clonal expansion of T cells. Math. Biosci. Engineer. 10, 59–73 (2013)MathSciNetMATH Criaco, D., Dolfin, M.,. Restuccia, L: Approximate smooth solution pf a mathematical model for the activation and clonal expansion of T cells. Math. Biosci. Engineer. 10, 59–73 (2013)MathSciNetMATH
26.
Zurück zum Zitat D. Criaco, M. Dolfin, A phenomenological approach to the dynamics of activation and clonal expansion of T cells. Math. Computer Model. 53, 314–329 (2011)MathSciNetCrossRefMATH D. Criaco, M. Dolfin, A phenomenological approach to the dynamics of activation and clonal expansion of T cells. Math. Computer Model. 53, 314–329 (2011)MathSciNetCrossRefMATH
27.
Zurück zum Zitat A. d’Onofrio, A general framework for modeling tumour–immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 220–235 (2005) A. d’Onofrio, A general framework for modeling tumour–immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 220–235 (2005)
28.
Zurück zum Zitat d’Onofrio, A.: Tumor–immune system interaction: modeling the tumor–stimulated proliferation of effectors and immunotherapy. Math. Models Methods Appl. Sci. 16, 1375–1401 (2006) d’Onofrio, A.: Tumor–immune system interaction: modeling the tumor–stimulated proliferation of effectors and immunotherapy. Math. Models Methods Appl. Sci. 16, 1375–1401 (2006)
29.
Zurück zum Zitat A. d’Onofrio, Tumor evasion from immune control: Strategies of a MISS to become a MASS. Chaos, Solitons and Fractals 31, 261–268 (2007) A. d’Onofrio, Tumor evasion from immune control: Strategies of a MISS to become a MASS. Chaos, Solitons and Fractals 31, 261–268 (2007)
30.
Zurück zum Zitat A. d’Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47,614–637 (2008) A. d’Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47,614–637 (2008)
31.
Zurück zum Zitat A. d’Onofrio, F. Gatti, P. Cerrai, L. Freschi, Delay–induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010) A. d’Onofrio, F. Gatti, P. Cerrai, L. Freschi, Delay–induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010)
32.
Zurück zum Zitat A. d’Onofrio, A. Ciancio, Simple biophysical model of tumor evasion from immune system control. Phys Rev E Stat Nonlin Soft Matter Phys. 84 (2011) A. d’Onofrio, A. Ciancio, Simple biophysical model of tumor evasion from immune system control. Phys Rev E Stat Nonlin Soft Matter Phys. 84 (2011)
33.
Zurück zum Zitat P. Ehrlich, Über den jetzigen Stand der Karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909) P. Ehrlich, Über den jetzigen Stand der Karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909)
34.
Zurück zum Zitat A. Eibeck, W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations. Annals Appl. Prob. 13, 845–889 (2003)MathSciNetCrossRefMATH A. Eibeck, W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations. Annals Appl. Prob. 13, 845–889 (2003)MathSciNetCrossRefMATH
35.
Zurück zum Zitat S.N., Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence. Wiley, New York (1986) S.N., Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence. Wiley, New York (1986)
36.
Zurück zum Zitat D., Finkelshtein, Y., Kondratiev, O. Kutoviy, Semigroup approach to birth–and–death stochastic dynamics in continuum. J. Funct. Anal. 262, 1274–1308 (2012) D., Finkelshtein, Y., Kondratiev, O. Kutoviy, Semigroup approach to birth–and–death stochastic dynamics in continuum. J. Funct. Anal. 262, 1274–1308 (2012)
37.
Zurück zum Zitat A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theoret. Biol. 250, 684–704 (2008)MathSciNetCrossRef A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theoret. Biol. 250, 684–704 (2008)MathSciNetCrossRef
38.
Zurück zum Zitat J. Gołab, M. Jakóbisiak, W. Lasek (eds.), Immunologia, Wydawnictwo Naukowe PWN, Warszawa (2002), in Polish J. Gołab, M. Jakóbisiak, W. Lasek (eds.), Immunologia, Wydawnictwo Naukowe PWN, Warszawa (2002), in Polish
39.
Zurück zum Zitat D., Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011) D., Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)
40.
Zurück zum Zitat H.L. Hartwell, J.J. Hopfield, S. Leibner, A.W. Murray, From molecular to modular cell biology. Nature 402, c47–c52 (1999)CrossRef H.L. Hartwell, J.J. Hopfield, S. Leibner, A.W. Murray, From molecular to modular cell biology. Nature 402, c47–c52 (1999)CrossRef
41.
Zurück zum Zitat R. B. Herberman (ed.), NK Cells and Other Natural Effector Cells (Academic Press, New York 1982) R. B. Herberman (ed.), NK Cells and Other Natural Effector Cells (Academic Press, New York 1982)
42.
Zurück zum Zitat C.A. Janeway, P. Travers, M. Walport, Immunobiology: The Immune System in Health and Disease ( Garland Science, New York 2001) C.A. Janeway, P. Travers, M. Walport, Immunobiology: The Immune System in Health and Disease ( Garland Science, New York 2001)
43.
Zurück zum Zitat B., Joshi, X., Wang, S., Banerjee, H., Tian, A., Matzavinos, M.A.J. Chaplain, On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J. Theor. Biol. 259, 820–827 (2009) B., Joshi, X., Wang, S., Banerjee, H., Tian, A., Matzavinos, M.A.J. Chaplain, On immunotherapies and cancer vaccination protocols: A mathematical modelling approach. J. Theor. Biol. 259, 820–827 (2009)
44.
Zurück zum Zitat D., Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor - immune interaction. J. Math. Biol. 37, 235–252 (1998) D., Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor - immune interaction. J. Math. Biol. 37, 235–252 (1998)
45.
Zurück zum Zitat V.A., Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumours: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994) V.A., Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumours: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)
46.
Zurück zum Zitat M. Lachowicz, in Links between microscopic and macroscopic descriptions eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math vol. 1940, (Springer, Berlin 2008) pp. 201–268 M. Lachowicz, in Links between microscopic and macroscopic descriptions eds. by J. Banasiak, V. Capasso, M.A.J. Chaplain, M. Lachowicz, J. Miȩkisz Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic, Lecture Notes Math vol. 1940, (Springer, Berlin 2008) pp. 201–268
47.
Zurück zum Zitat Lachowicz, M.: in Towards microscopic and nonlocal models of tumour invasion of tissue eds. by In: N. Bellomo, M. Chaplain, E. De Angelis, ( Birkhauser, Boston 2008) pp. 49–63. Lachowicz, M.: in Towards microscopic and nonlocal models of tumour invasion of tissue eds. by In: N. Bellomo, M. Chaplain, E. De Angelis, ( Birkhauser, Boston 2008) pp. 49–63.
48.
Zurück zum Zitat M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems. Prob. Engin. Mech. 26, 54–60 (2011)CrossRef M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems. Prob. Engin. Mech. 26, 54–60 (2011)CrossRef
49.
Zurück zum Zitat Lachowicz, M.: Individually–based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Analysis Real World Appl. 12, 2396–2407 (2011)MathSciNetCrossRefMATH Lachowicz, M.: Individually–based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Analysis Real World Appl. 12, 2396–2407 (2011)MathSciNetCrossRefMATH
50.
Zurück zum Zitat M. Lachowicz, A. Quartarone, A general framework for modeling tumor–immune system competition at the mesoscopic level. Appl. Math. Letters 25, 2118–2122 (2012)MathSciNetCrossRefMATH M. Lachowicz, A. Quartarone, A general framework for modeling tumor–immune system competition at the mesoscopic level. Appl. Math. Letters 25, 2118–2122 (2012)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Lachowicz, M., Quartarone, A., Ryabukha, T.V.: Stability of solutions of kinetic equations corresponding to the replicator dynamics, Kinetic Relat. Models (to appear) Lachowicz, M., Quartarone, A., Ryabukha, T.V.: Stability of solutions of kinetic equations corresponding to the replicator dynamics, Kinetic Relat. Models (to appear)
52.
Zurück zum Zitat M. Lachowicz, T.V. Ryabukha, Equilibrium solutions for microscopic stochastic systems in population dynamics. Math. Biosci. Engin. 10, 777–786 (2013)MathSciNetCrossRefMATH M. Lachowicz, T.V. Ryabukha, Equilibrium solutions for microscopic stochastic systems in population dynamics. Math. Biosci. Engin. 10, 777–786 (2013)MathSciNetCrossRefMATH
53.
Zurück zum Zitat M.Lachowicz, D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit. Math. Models Methods Appl. Sci. 11, 1375–1390 (2001) M.Lachowicz, D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit. Math. Models Methods Appl. Sci. 11, 1375–1390 (2001)
54.
Zurück zum Zitat O. Lejeune, M.A.J. Chaplain, I. El Akili, Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours. Math. Comput. Modelling 47 649–662 (2008) O. Lejeune, M.A.J. Chaplain, I. El Akili, Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours. Math. Comput. Modelling 47 649–662 (2008)
55.
Zurück zum Zitat G.W. Litman, J.P., Cannon, L.J. Dishaw, Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 5, 866–879 (2005) G.W. Litman, J.P., Cannon, L.J. Dishaw, Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol. 5, 866–879 (2005)
56.
Zurück zum Zitat A. Matzavinos, M.A.J. Chaplain, Travelling wave analysis of a model of the immune response to cancer. Biologies 327, 995–1008 (2004)CrossRef A. Matzavinos, M.A.J. Chaplain, Travelling wave analysis of a model of the immune response to cancer. Biologies 327, 995–1008 (2004)CrossRef
57.
Zurück zum Zitat A. Matzavinos, M.A.J. Chaplain, V. Kuznetsov, Mathematical modelling of the spatio–temporal response of cytotoxic T–lymphocytes to a solid tumour. Math. Med. Biol. 21, 1–34 (2004)CrossRefMATH A. Matzavinos, M.A.J. Chaplain, V. Kuznetsov, Mathematical modelling of the spatio–temporal response of cytotoxic T–lymphocytes to a solid tumour. Math. Med. Biol. 21, 1–34 (2004)CrossRefMATH
58.
Zurück zum Zitat G. Mayer,Microbiology and Immunology On–Line Textbook (USC School of Medicine, 2006) G. Mayer,Microbiology and Immunology On–Line Textbook (USC School of Medicine, 2006)
59.
Zurück zum Zitat D. Morale, V. Capasso, K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations. J. Math. Biol. 50, 49–66 (2005)MathSciNetCrossRefMATH D. Morale, V. Capasso, K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations. J. Math. Biol. 50, 49–66 (2005)MathSciNetCrossRefMATH
60.
Zurück zum Zitat M.R. Owen, J.A. Sherratt, Pattern formation and spatiotemporal irregularity in a model for macrophage–tumour interaction. J. Theor. Biol. 189, 63–80 (1997)CrossRef M.R. Owen, J.A. Sherratt, Pattern formation and spatiotemporal irregularity in a model for macrophage–tumour interaction. J. Theor. Biol. 189, 63–80 (1997)CrossRef
61.
Zurück zum Zitat L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell–mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005) L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell–mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005)
62.
Zurück zum Zitat A. Quartarone, Stability of solutions of some mesoscopic equations in Biomathematics. Ph.D. Thesis. University of Messina. Department of Mathematics and Informatics. Messina (2013) A. Quartarone, Stability of solutions of some mesoscopic equations in Biomathematics. Ph.D. Thesis. University of Messina. Department of Mathematics and Informatics. Messina (2013)
63.
Zurück zum Zitat L. Saint–Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1 Lecture Notes Mathematics, vol. 1971, (Springer, Berlin 2009) L. Saint–Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1 Lecture Notes Mathematics, vol. 1971, (Springer, Berlin 2009)
64.
Zurück zum Zitat Z. Szymańska, Analysis of immunotherapy models in the context of cancer dynamics. Int. J. Appl. Math. Comput. Sci. 13, 407–418 (2003)MathSciNetMATH Z. Szymańska, Analysis of immunotherapy models in the context of cancer dynamics. Int. J. Appl. Math. Comput. Sci. 13, 407–418 (2003)MathSciNetMATH
65.
Zurück zum Zitat Z. Szymańska, C. Morales Rodrigo, M., Lachowicz, M.A.J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009) Z. Szymańska, C. Morales Rodrigo, M., Lachowicz, M.A.J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)
66.
Zurück zum Zitat M.W. Teng, J.B. Swann, C.M. Koebel, R.D. Schreiber, M.J. Smyth, Immune–mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–983 (2008)CrossRef M.W. Teng, J.B. Swann, C.M. Koebel, R.D. Schreiber, M.J. Smyth, Immune–mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–983 (2008)CrossRef
67.
Zurück zum Zitat C.M. Vajdic, van Leeuwen, M.T.: Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer. 125, 1747–1754 (2009) C.M. Vajdic, van Leeuwen, M.T.: Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer. 125, 1747–1754 (2009)
68.
Zurück zum Zitat W. Wagner, A functional law of large numbers for Boltzmann type stochastic particle systems. Stochastic Anal. Appl. 14, 591–636 (1996)MathSciNetCrossRefMATH W. Wagner, A functional law of large numbers for Boltzmann type stochastic particle systems. Stochastic Anal. Appl. 14, 591–636 (1996)MathSciNetCrossRefMATH
69.
Zurück zum Zitat R.A. Weinberg, The Biology of Cancer. Garland Sciences (Taylor & Francis Group, New York 2007) R.A. Weinberg, The Biology of Cancer. Garland Sciences (Taylor & Francis Group, New York 2007)
Metadaten
Titel
A General Framework for Multiscale Modeling of Tumor–Immune System Interactions
verfasst von
Marina Dolfin
Mirosław Lachowicz
Zuzanna Szymańska
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0458-7_5

Premium Partner