Skip to main content

2016 | OriginalPaper | Buchkapitel

14. A General Model for Studying Time Evolution of Transition Networks

verfasst von : Choujun Zhan, Chi K. Tse, Michael Small

Erschienen in: Complex Systems and Networks

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks, referred to as transition networks in this chapter, represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a general analytical model describing the dynamics of a transition network and derive a simulation algorithm for studying the network evolutionary behavior. By using this model, we can analytically compute the probability that (1) the next transition will happen at a given time; (2) a particular transition will occur; (3) a particular transition will occur with a specific link. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an “experiment” or “realization” of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics of transition networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef
2.
Zurück zum Zitat Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)CrossRefMATH Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)CrossRefMATH
3.
Zurück zum Zitat Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)CrossRef Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)CrossRef
5.
Zurück zum Zitat May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64(6), 066112 (2001)CrossRef May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64(6), 066112 (2001)CrossRef
6.
Zurück zum Zitat Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002) Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)
7.
Zurück zum Zitat Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)CrossRef Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)CrossRef
8.
Zurück zum Zitat Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)CrossRef Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)CrossRef
9.
Zurück zum Zitat Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)CrossRef Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)CrossRef
10.
Zurück zum Zitat Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)CrossRef Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)CrossRef
11.
Zurück zum Zitat Vazquez, A.: Polynomial growth in branching processes with diverging reproductive number. Phys. Rev. Lett. 96(3), 038702 (2006)CrossRef Vazquez, A.: Polynomial growth in branching processes with diverging reproductive number. Phys. Rev. Lett. 96(3), 038702 (2006)CrossRef
12.
Zurück zum Zitat Wang, W.S.Y., Minett, J.W.: The invasion of language: emergence, change and death. Trends Ecol. Evol. 20(5), 263–269 (2005)CrossRef Wang, W.S.Y., Minett, J.W.: The invasion of language: emergence, change and death. Trends Ecol. Evol. 20(5), 263–269 (2005)CrossRef
13.
Zurück zum Zitat Ke, J., Gong, T., Wang, W.S.Y.: Language change and social networks. Comput. Phys. Commun. 3(4), 935–949 (2008)MATH Ke, J., Gong, T., Wang, W.S.Y.: Language change and social networks. Comput. Phys. Commun. 3(4), 935–949 (2008)MATH
14.
Zurück zum Zitat Ribeiro, B.: Modeling and predicting the growth and death of membership-based websites. In: Proceedings of 23rd International Conference World Wide Web, International World Wide Web Conferences Steering Committee, pp. 653–664 (2014) Ribeiro, B.: Modeling and predicting the growth and death of membership-based websites. In: Proceedings of 23rd International Conference World Wide Web, International World Wide Web Conferences Steering Committee, pp. 653–664 (2014)
15.
Zurück zum Zitat Mann, R.P., Faria, J., Sumpter, D.J.T., Krause, J.: The dynamics of audience applause. J. R. Soc. Interface 10(85), 20130466 (2013)CrossRef Mann, R.P., Faria, J., Sumpter, D.J.T., Krause, J.: The dynamics of audience applause. J. R. Soc. Interface 10(85), 20130466 (2013)CrossRef
16.
Zurück zum Zitat Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRef Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRef
17.
Zurück zum Zitat Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28, Wiley Online Library (1992) Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28, Wiley Online Library (1992)
19.
Zurück zum Zitat Small, M., Tse, C.K.: Small world and scale free model of transmission of SARS. Int. J. Bifurc. Chaos 15(05), 1745–1755 (2005)CrossRef Small, M., Tse, C.K.: Small world and scale free model of transmission of SARS. Int. J. Bifurc. Chaos 15(05), 1745–1755 (2005)CrossRef
20.
Zurück zum Zitat Small, M., Tse, C.K., Walker, D.M.: Super-spreaders and the rate of transmission of the SARS virus. Phys. D Nonlinear Phenom. 215(2), 146–158 (2006)MathSciNetCrossRefMATH Small, M., Tse, C.K., Walker, D.M.: Super-spreaders and the rate of transmission of the SARS virus. Phys. D Nonlinear Phenom. 215(2), 146–158 (2006)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)MATH Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)MATH
22.
23.
Zurück zum Zitat Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)CrossRef Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)CrossRef
24.
Zurück zum Zitat Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes in Complex Networks, vol. 1. Cambridge University Press, Cambridge (2008)CrossRef Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes in Complex Networks, vol. 1. Cambridge University Press, Cambridge (2008)CrossRef
25.
Zurück zum Zitat Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)CrossRef Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)CrossRef
26.
Zurück zum Zitat Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef
27.
Zurück zum Zitat Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef
28.
Zurück zum Zitat Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MATH Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MATH
29.
Zurück zum Zitat Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRef Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRef
30.
Zurück zum Zitat Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4), 341–346 (1999)MathSciNetCrossRefMATH Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4), 341–346 (1999)MathSciNetCrossRefMATH
31.
32.
Zurück zum Zitat Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. Handb. Graphs Netw. 1, 34 (2003) Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. Handb. Graphs Netw. 1, 34 (2003)
33.
Zurück zum Zitat Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)CrossRef Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)CrossRef
34.
Zurück zum Zitat YahooNews: Number of active users at Facebook over the years (2013) YahooNews: Number of active users at Facebook over the years (2013)
Metadaten
Titel
A General Model for Studying Time Evolution of Transition Networks
verfasst von
Choujun Zhan
Chi K. Tse
Michael Small
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-47824-0_14

Premium Partner