Skip to main content
Erschienen in: Meccanica 3/2021

06.02.2021

A generalized integro-differential theory of nonlocal elasticity of n-Helmholtz type—part II: boundary-value problems in the one-dimensional case

verfasst von: Dario De Domenico, Giuseppe Ricciardi, Harm Askes

Erschienen in: Meccanica | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is the second in a series of two that deal with a generalized theory of nonlocal elasticity of n-Helmholtz type. This terminology is motivated by the fact that the attenuation function (kernel) of the integral type nonlocal constitutive equation is the Green function associated with a generalized Helmholtz differential operator of order n. In the first paper, the governing equations have been derived and supported by suitable thermodynamic arguments. In this second paper, the proposed nonlocal model is specialized for the one-dimensional case to solve boundary-value problems. First, the relevant higher-order nonstandard boundary conditions in the differential (or, more precisely, integro-differential) version of the theory are derived. These boundary conditions are consistent with the particular family of attenuation functions adopted in the integral formulation. Then, some simple applications to statics and dynamics problems are presented. In particular, the theory is used to capture the static response and to perform free vibration analysis of a discrete lattice model with periodic microstructure (mass-and-spring chain) featured by nearest neighbor and next nearest neighbor particle interactions. In the latter case, boundary effects arise at the two lattice ends that are well captured by the proposed nonlocal continuum formulation. The nonlocal material parameters are identified a priori by matching the dispersion curve of the discrete lattice model, and a comparison in terms of attenuation function is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRef
2.
Zurück zum Zitat Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21(4):313–342 Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21(4):313–342
3.
Zurück zum Zitat Altan SB (1989) Uniqueness of the initial-value problem in nonlocal elastic solids. Int J Solids Struct 25:1271–1278CrossRef Altan SB (1989) Uniqueness of the initial-value problem in nonlocal elastic solids. Int J Solids Struct 25:1271–1278CrossRef
4.
Zurück zum Zitat Fuschi P, Pisano AA, De Domenico D (2015) Plane stress problems in nonlocal elasticity: finite element solutions with a strain-difference-based formulation. J Math Anal Appl 431:714–736MathSciNetCrossRef Fuschi P, Pisano AA, De Domenico D (2015) Plane stress problems in nonlocal elasticity: finite element solutions with a strain-difference-based formulation. J Math Anal Appl 431:714–736MathSciNetCrossRef
6.
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH
7.
Zurück zum Zitat Lazar M, Maugin GM, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmoltz type and some applications. Int J Solids Struct 43:1404–1421CrossRef Lazar M, Maugin GM, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmoltz type and some applications. Int J Solids Struct 43:1404–1421CrossRef
8.
Zurück zum Zitat Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40(26):7399–7423CrossRef Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40(26):7399–7423CrossRef
9.
Zurück zum Zitat Protter MH, Morrey CB Jr (1985) Intermediate calculus, 2nd edn. Springer, New York. ISBN 0-387-96058-9CrossRef Protter MH, Morrey CB Jr (1985) Intermediate calculus, 2nd edn. Springer, New York. ISBN 0-387-96058-9CrossRef
10.
Zurück zum Zitat Askes H, Aifantis EC (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139:297–304CrossRef Askes H, Aifantis EC (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139:297–304CrossRef
11.
Zurück zum Zitat Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990CrossRef Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990CrossRef
12.
Zurück zum Zitat Askes H, Bennett T, Aifantis EC (2007) A new formulation and C0-implementation of dynamically consistent gradient elasticity. Int J Numer Methods Eng 72:111–126CrossRef Askes H, Bennett T, Aifantis EC (2007) A new formulation and C0-implementation of dynamically consistent gradient elasticity. Int J Numer Methods Eng 72:111–126CrossRef
13.
Zurück zum Zitat Polizzotto C (2013) A second strain gradient elasticity theory with second velocity gradient inertia—part II: dynamic behavior. Int J Solids Struct 50(24):3766–3777CrossRef Polizzotto C (2013) A second strain gradient elasticity theory with second velocity gradient inertia—part II: dynamic behavior. Int J Solids Struct 50(24):3766–3777CrossRef
14.
Zurück zum Zitat De Domenico D, Askes H (2016) A new multi-scale dispersive gradient elasticity model with micro-inertia: formulation and C0-finite element implementation. Int J Numer Methods Eng 108(5):308–333CrossRef De Domenico D, Askes H (2016) A new multi-scale dispersive gradient elasticity model with micro-inertia: formulation and C0-finite element implementation. Int J Numer Methods Eng 108(5):308–333CrossRef
15.
Zurück zum Zitat De Domenico D, Askes H (2017) Computational aspects of a new multi-scale dispersive gradient elasticity model with micro-inertia. Int J Numer Methods Eng 109(1):52–72MathSciNetCrossRef De Domenico D, Askes H (2017) Computational aspects of a new multi-scale dispersive gradient elasticity model with micro-inertia. Int J Numer Methods Eng 109(1):52–72MathSciNetCrossRef
16.
Zurück zum Zitat De Domenico D, Askes H (2018) Stress gradient, strain gradient and inertia gradient beam theories for the simulation of flexural wave dispersion in carbon nanotubes. Compos Part B Eng 153:285–294CrossRef De Domenico D, Askes H (2018) Stress gradient, strain gradient and inertia gradient beam theories for the simulation of flexural wave dispersion in carbon nanotubes. Compos Part B Eng 153:285–294CrossRef
17.
Zurück zum Zitat De Domenico D, Askes H, Aifantis EC (2018) Capturing wave dispersion in heterogeneous and microstructured materials through a three-length-scale gradient elasticity formulation. J Mech Behav Mater 27(5–6):1–8 De Domenico D, Askes H, Aifantis EC (2018) Capturing wave dispersion in heterogeneous and microstructured materials through a three-length-scale gradient elasticity formulation. J Mech Behav Mater 27(5–6):1–8
18.
Zurück zum Zitat De Domenico D, Askes H (2018) Nano-scale wave dispersion beyond the First Brillouin Zone simulated with inertia gradient continua. J Appl Phys 124(20):205107CrossRef De Domenico D, Askes H (2018) Nano-scale wave dispersion beyond the First Brillouin Zone simulated with inertia gradient continua. J Appl Phys 124(20):205107CrossRef
19.
Zurück zum Zitat De Domenico D, Askes H, Aifantis EC (2019) Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. Int J Solids Struct 158:176–190CrossRef De Domenico D, Askes H, Aifantis EC (2019) Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. Int J Solids Struct 158:176–190CrossRef
20.
Zurück zum Zitat Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur J Mech A Solids 21:555–572CrossRef Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur J Mech A Solids 21:555–572CrossRef
21.
Zurück zum Zitat Metrikine AV, Askes H (2006) An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos Mag 86:3259–3286CrossRef Metrikine AV, Askes H (2006) An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos Mag 86:3259–3286CrossRef
22.
Zurück zum Zitat Challamel N, Rakotomanana L, Le Marrec L (2009) A dispersive wave equation using nonlocal elasticity. C R Mecanique 337:591–595CrossRef Challamel N, Rakotomanana L, Le Marrec L (2009) A dispersive wave equation using nonlocal elasticity. C R Mecanique 337:591–595CrossRef
23.
Zurück zum Zitat Fuschi P, Pisano AA, Polizzotto C (2019) Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int J Mech Sci 151:661–671CrossRef Fuschi P, Pisano AA, Polizzotto C (2019) Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int J Mech Sci 151:661–671CrossRef
24.
Zurück zum Zitat Pisano AA, Fuschi P, Polizzotto C (2020) A strain-difference based nonlocal elasticity theory for small-scale shear-deformable beams with parametric warping. Int J Multiscale Comput Eng 18(1):83–102CrossRef Pisano AA, Fuschi P, Polizzotto C (2020) A strain-difference based nonlocal elasticity theory for small-scale shear-deformable beams with parametric warping. Int J Multiscale Comput Eng 18(1):83–102CrossRef
Metadaten
Titel
A generalized integro-differential theory of nonlocal elasticity of n-Helmholtz type—part II: boundary-value problems in the one-dimensional case
verfasst von
Dario De Domenico
Giuseppe Ricciardi
Harm Askes
Publikationsdatum
06.02.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 3/2021
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01298-9

Weitere Artikel der Ausgabe 3/2021

Meccanica 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.