Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

01.09.2021 | Research Article-Mechanical Engineering

A High Magnetic Flux Density Lorentz Force Magnetic Bearing Design Method with Suction and Combined Magnetic Steel

verfasst von: Yin Zengyuan, Cai Yuanwen, Ren Yuan, Wang Weijie, Xiaocen Chen

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to solve the problems of low magnetic flux density and non-uniformity of magnetic flux density of traditional Lorentz force magnetic bearing (LFMB), a combined magnetic steel single closed magnetic loop magnetic bearing with suction type is designed. Firstly, the magnetic field intensity and magnetic field uniformity of the traditional LFMB are analyzed, and the existing problems of the traditional LFMB are pointed out. Then, a new LFMB structure is designed. The concepts of magnetic field mean value and standard deviation are introduced to describe magnetic field intensity and magnetic field uniformity. By analysis of the 2-D and 3-D magnetic flux characteristics of the proposed LFMB, it can be seen that the magnetic flux density of the new LFMB is 0.67–0.74 T, and the magnetic flux uniformity is 0.009–0.0192. By comparing the conditions of applied current and 0 current, we can see that the structure designed in this paper can reduce the influence of current on the magnetic field uniformity. Finally, by comparing the control effects of the traditional structure and the proposed LFMB structure, it can be concluded that the proposed method can reduce the power consumption and improve the precision of the output torque.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fang, J.; Zheng, S.; Han, B.: Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG. IEEE Trans. Instrum. Meas. 61(2), 338–348 (2011)CrossRef Fang, J.; Zheng, S.; Han, B.: Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG. IEEE Trans. Instrum. Meas. 61(2), 338–348 (2011)CrossRef
2.
Zurück zum Zitat Matsuzaki, T.; Takemoto, M.; Ogasawara, S.; Ota, S.; Oi, K.; Matsuhashi, D.: Novel Structure of three-axis active-control-type magnetic bearing for reducing rotor iron loss. IEEE Trans. Magn. 52(7), 1–4 (2016)CrossRef Matsuzaki, T.; Takemoto, M.; Ogasawara, S.; Ota, S.; Oi, K.; Matsuhashi, D.: Novel Structure of three-axis active-control-type magnetic bearing for reducing rotor iron loss. IEEE Trans. Magn. 52(7), 1–4 (2016)CrossRef
3.
Zurück zum Zitat Crassidis, J.L.; Markley, F.L.: Three-axis attitude estimation using rate-integrating gyroscopes. J. Guid., Control, Dyn. 39(7), 1513–1526 (2016)CrossRef Crassidis, J.L.; Markley, F.L.: Three-axis attitude estimation using rate-integrating gyroscopes. J. Guid., Control, Dyn. 39(7), 1513–1526 (2016)CrossRef
4.
Zurück zum Zitat Leve, F.A.: Scaled control moment gyroscope dynamics effects on performance. Acta Astronaut. 110, 77–88 (2015)CrossRef Leve, F.A.: Scaled control moment gyroscope dynamics effects on performance. Acta Astronaut. 110, 77–88 (2015)CrossRef
5.
Zurück zum Zitat Liu, Q.; Li, H.; Wang, W.; Peng, C.; Yin, Z.: Analysis and experiment of 5-DOF decoupled spherical vernier-gimballing magnetically suspended flywheel (VGMSFW). IEEE Access 8, 111707–111717 (2020)CrossRef Liu, Q.; Li, H.; Wang, W.; Peng, C.; Yin, Z.: Analysis and experiment of 5-DOF decoupled spherical vernier-gimballing magnetically suspended flywheel (VGMSFW). IEEE Access 8, 111707–111717 (2020)CrossRef
6.
Zurück zum Zitat Yang, X.D.; An, H.Z.; Qian, Y.J.; Zhang, W.; Yao, M.H.: Elliptic motions and control of rotors suspending in active magnetic bearings. J. Comput. Nonlinear Dyn. 11(5), 4503–4511 (2016) Yang, X.D.; An, H.Z.; Qian, Y.J.; Zhang, W.; Yao, M.H.: Elliptic motions and control of rotors suspending in active magnetic bearings. J. Comput. Nonlinear Dyn. 11(5), 4503–4511 (2016)
7.
Zurück zum Zitat Wang, S.; Zhu, H.; Wu, M.; Zhang, W.: Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020) Wang, S.; Zhu, H.; Wu, M.; Zhang, W.: Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020)
8.
Zurück zum Zitat Polajzer, B.; Stumberger, G.; Ritonja, J.; Dolinar, D.: Variations of active magnetic bearings linearized model parameters analyzed by finite element computation. IEEE Trans. Magn. 44(6), 1534–1537 (2008)CrossRef Polajzer, B.; Stumberger, G.; Ritonja, J.; Dolinar, D.: Variations of active magnetic bearings linearized model parameters analyzed by finite element computation. IEEE Trans. Magn. 44(6), 1534–1537 (2008)CrossRef
9.
Zurück zum Zitat Yu, J.H.; Postrekhin, E.; Ma, K.B.; Chu, W.K.; Wilson, T.: Vibration isolation for space structures using HTS-magnet interaction. IEEE Trans. Appl. Supercond. 9(2), 908–910 (1999)CrossRef Yu, J.H.; Postrekhin, E.; Ma, K.B.; Chu, W.K.; Wilson, T.: Vibration isolation for space structures using HTS-magnet interaction. IEEE Trans. Appl. Supercond. 9(2), 908–910 (1999)CrossRef
10.
Zurück zum Zitat Sun, J.; Wang, C.; Le, Y.: Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG. J. Magn. Magn. Mater. 412, 147–155 (2016)CrossRef Sun, J.; Wang, C.; Le, Y.: Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG. J. Magn. Magn. Mater. 412, 147–155 (2016)CrossRef
11.
Zurück zum Zitat Jeon, S.; Ahn, H.J.; Han, D.C.; Chang, I.B.: New design of cylindrical capacitive sensor for on-line precision control of AMB spindle. IEEE Trans. Instrum. Measure. 50(3), 757–763 (2001)CrossRef Jeon, S.; Ahn, H.J.; Han, D.C.; Chang, I.B.: New design of cylindrical capacitive sensor for on-line precision control of AMB spindle. IEEE Trans. Instrum. Measure. 50(3), 757–763 (2001)CrossRef
12.
Zurück zum Zitat da Silva, I.; Horikawa, O.: Experimental development of a one-degree-of-freedom controlled magnetic linear bearing. IEEE Trans. Magn. 41(11), 4257–4260 (2005)CrossRef da Silva, I.; Horikawa, O.: Experimental development of a one-degree-of-freedom controlled magnetic linear bearing. IEEE Trans. Magn. 41(11), 4257–4260 (2005)CrossRef
13.
Zurück zum Zitat Han, B.; Zheng, S.; Wang, Z.; Le, Y.: Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro. IEEE Trans. Ind. Electron. 62(12), 7424–7435 (2015)CrossRef Han, B.; Zheng, S.; Wang, Z.; Le, Y.: Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro. IEEE Trans. Ind. Electron. 62(12), 7424–7435 (2015)CrossRef
14.
Zurück zum Zitat Lin, S.: Dynamically Tuned Gyroscope. National Defense Industry Press, Beijing (1983) Lin, S.: Dynamically Tuned Gyroscope. National Defense Industry Press, Beijing (1983)
15.
Zurück zum Zitat Chassoulier, D.; Chillet, C.; Delamare, J.: Ball joint type magnetic bearing for tilting body. USA: 6351049B1. (2002) Chassoulier, D.; Chillet, C.; Delamare, J.: Ball joint type magnetic bearing for tilting body. USA: 6351049B1. (2002)
16.
Zurück zum Zitat Chassoulier, D.; Chillet, C.; Delamare, J.: Magnetic centering bearing with high-amplitude tilt control, USA: 6384500B1. (2002) Chassoulier, D.; Chillet, C.; Delamare, J.: Magnetic centering bearing with high-amplitude tilt control, USA: 6384500B1. (2002)
17.
Zurück zum Zitat Gerlach, B.; Ehinger, M.; Raue, H.: Gimballing magnetic bearing reaction wheel with digital controller. In: International ESA Conference on Guidance, Navigation and Control Systems. Academic press, San Francisco, pp. 1–6 (2005). Gerlach, B.; Ehinger, M.; Raue, H.: Gimballing magnetic bearing reaction wheel with digital controller. In: International ESA Conference on Guidance, Navigation and Control Systems. Academic press, San Francisco, pp. 1–6 (2005).
18.
Zurück zum Zitat Zhao, Y.; Liu, Q.; Ma, L.: Novel lorentz force-type magnetic bearing with flux congregating rings for magnetically suspended gyrowheel. IEEE Trans. Magn. 55(12), 1–8 (2019)CrossRef Zhao, Y.; Liu, Q.; Ma, L.: Novel lorentz force-type magnetic bearing with flux congregating rings for magnetically suspended gyrowheel. IEEE Trans. Magn. 55(12), 1–8 (2019)CrossRef
19.
Zurück zum Zitat Yu, Y.J.; Yang, Z.H.; Fang, J.C.: Medium-frequency disturbance attenuation for the spacecraft via virtual-gimbal tilting of the magnetically suspended reaction wheel. Control. Theory. & Applications. Iet. 9(7), 1066–1074 (2015)CrossRef Yu, Y.J.; Yang, Z.H.; Fang, J.C.: Medium-frequency disturbance attenuation for the spacecraft via virtual-gimbal tilting of the magnetically suspended reaction wheel. Control. Theory. & Applications. Iet. 9(7), 1066–1074 (2015)CrossRef
20.
Zurück zum Zitat Yu, Y.J.; Fang, J.C.; Xiang, B.: Adaptive back-stepping tracking control for rotor shaft tilting of active magnetically suspended momentum wheel. ISA Trans. 53(6), 1892–1900 (2014)CrossRef Yu, Y.J.; Fang, J.C.; Xiang, B.: Adaptive back-stepping tracking control for rotor shaft tilting of active magnetically suspended momentum wheel. ISA Trans. 53(6), 1892–1900 (2014)CrossRef
21.
Zurück zum Zitat Ren, Y.; Chen, X.; Cai, Y.; Zhang, H.; Xin, C.; Liu, Q.: Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes. IEEE Trans. Ind. Electron. 65(6), 4921–4932 (2017)CrossRef Ren, Y.; Chen, X.; Cai, Y.; Zhang, H.; Xin, C.; Liu, Q.: Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes. IEEE Trans. Ind. Electron. 65(6), 4921–4932 (2017)CrossRef
22.
Zurück zum Zitat Chen, X.; Ren, Y.; Cai, Y.; Chen, J.; Wang, W.; Yang, X.D.: Spacecraft vibration control based on extended modal decoupling of vernier-gimballing magnetically suspension flywheels. IEEE Trans. Ind. Electron. 67(5), 4066–4076 (2019)CrossRef Chen, X.; Ren, Y.; Cai, Y.; Chen, J.; Wang, W.; Yang, X.D.: Spacecraft vibration control based on extended modal decoupling of vernier-gimballing magnetically suspension flywheels. IEEE Trans. Ind. Electron. 67(5), 4066–4076 (2019)CrossRef
23.
Zurück zum Zitat Yin, Z.; Cai, Y.; Ren, Y.; Wang, W.: a measurement method of torque coefficient for magnetically suspended control and sensitive gyroscope. IEEE Sensors J. 21(3), 14767–14775 (2021)CrossRef Yin, Z.; Cai, Y.; Ren, Y.; Wang, W.: a measurement method of torque coefficient for magnetically suspended control and sensitive gyroscope. IEEE Sensors J. 21(3), 14767–14775 (2021)CrossRef
24.
Zurück zum Zitat Yin, Z.; Cai, Y.; Ren, Y.; Wang, W.; Chen, X.: A high precision attitude measurement method for spacecraft based on magnetically suspended rotor tilt modulation. IEEE Sensors J. 20(24), 14882–14891 (2020)CrossRef Yin, Z.; Cai, Y.; Ren, Y.; Wang, W.; Chen, X.: A high precision attitude measurement method for spacecraft based on magnetically suspended rotor tilt modulation. IEEE Sensors J. 20(24), 14882–14891 (2020)CrossRef
Metadaten
Titel
A High Magnetic Flux Density Lorentz Force Magnetic Bearing Design Method with Suction and Combined Magnetic Steel
verfasst von
Yin Zengyuan
Cai Yuanwen
Ren Yuan
Wang Weijie
Xiaocen Chen
Publikationsdatum
01.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06054-z

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.