Skip to main content

2022 | OriginalPaper | Buchkapitel

A Hybrid Feature Selection Approach-Based Android Malware Detection Framework Using Machine Learning Techniques

verfasst von : Santosh K. Smmarwar, Govind P. Gupta, Sanjay Kumar

Erschienen in: Cyber Security, Privacy and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With more  popularity and advancement in Internet-based services, the use of the Android smartphone has been increasing very rapidly. The tremendous popularity of using the Android operating system has attracted malware attacks on these devices. Detecting variants of malware features that change their behavior to hide from being detected by the traditional method of machine learning is being an incapable and challenging task. To overcome these issues of malware feature detection, an efficient feature selection plays a crucial role in detecting malware features and reduces the dimensionality of a huge dataset and removes the unnecessary features that are not useful and keeps those relevant features that improve the classification accuracy and detection rate. To address the above issues, this paper proposed a novel framework in which a hybrid feature selection using wrapping feature selection (WFS) with the combination of random forest and greedy stepwise (RF-GreedySW) framework is devised to optimize the malware features. The proposed framework is capable of reducing a large number of attributes into an optimal feature to enhance the performance of the machine learning model. The framework used the three most popular ML classifiers such as random forest (RF), decision tree (C5.0), and support vector machine radial basis function (SVM RBF). The performance of the proposed framework is evaluated using the CIC-InvesAndMal2019 dataset. The DT (C5.0), RF, and SVM RBF model achieves better accuracy of 91.80%, 91.32%, and 82.33% on static layer, respectively. Similarly, the accuracy is 72.41%, 75.10%, and 62.07% on the dynamic layer by DT (C5.0), RF, and SVM RBF, respectively. Our model highlights good results on the CIC-InvesAndMal2019 dataset in terms of classification accuracy and increases the robustness of the model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Imtiaz SI, ur Rehman S, Javed AR, Jalil Z, Liu X, Alnumay WS (2021) DeepAMD: detection and identification of Android malware using high-efficient Deep Artificial Neural Network. Future Gener Comput Syst 115:844–856 Imtiaz SI, ur Rehman S, Javed AR, Jalil Z, Liu X, Alnumay WS (2021) DeepAMD: detection and identification of Android malware using high-efficient Deep Artificial Neural Network. Future Gener Comput Syst 115:844–856
2.
Zurück zum Zitat Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput Netw 171:107138CrossRef Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput Netw 171:107138CrossRef
3.
Zurück zum Zitat Venkatraman S, Alazab M (2018) Use of data visualization for zero-day malware detection. Secur Commun Netw Venkatraman S, Alazab M (2018) Use of data visualization for zero-day malware detection. Secur Commun Netw
4.
Zurück zum Zitat Shafiq M, Tian Z, Bashir AK, Du X, Guizani M (2020) IoT malicious traffic identification using wrapper-based feature selection mechanisms. Comput Secur 94:101863CrossRef Shafiq M, Tian Z, Bashir AK, Du X, Guizani M (2020) IoT malicious traffic identification using wrapper-based feature selection mechanisms. Comput Secur 94:101863CrossRef
5.
Zurück zum Zitat Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: deep learning-based android malware detection using real devices. Comput Secur 89:101663CrossRef Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: deep learning-based android malware detection using real devices. Comput Secur 89:101663CrossRef
6.
Zurück zum Zitat D’Angelo G, Palmieri F, Robustelli A, Castiglione A (2021) Effective classification of Android malware families through dynamic features and neural networks. Conn Sci 1–16 D’Angelo G, Palmieri F, Robustelli A, Castiglione A (2021) Effective classification of Android malware families through dynamic features and neural networks. Conn Sci 1–16
7.
Zurück zum Zitat Tchakounté F, Djakene Wandala A, Tiguiane Y (2019) Detection of Android malware based on sequence alignment of permissions. Int J Comput (IJC) 35(1):26–36 Tchakounté F, Djakene Wandala A, Tiguiane Y (2019) Detection of Android malware based on sequence alignment of permissions. Int J Comput (IJC) 35(1):26–36
8.
Zurück zum Zitat Yuan Z, Lu Y, Xue Y (2016) DroidDetector: Android malware characterization and detection using deep learning. Tsinghua Sci Technol 21(1):114–123CrossRef Yuan Z, Lu Y, Xue Y (2016) DroidDetector: Android malware characterization and detection using deep learning. Tsinghua Sci Technol 21(1):114–123CrossRef
9.
Zurück zum Zitat Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-Sec: deep learning in android malware detection. In: Proceedings of the 2014 ACM conference on SIGCOMM, Aug 2014, pp 371–372 Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-Sec: deep learning in android malware detection. In: Proceedings of the 2014 ACM conference on SIGCOMM, Aug 2014, pp 371–372
10.
Zurück zum Zitat Jerbi M, Dagdia ZC, Bechikh S, Said LB (2020) On the use of artificial malicious patterns for android malware detection. Comput Secur 92:101743CrossRef Jerbi M, Dagdia ZC, Bechikh S, Said LB (2020) On the use of artificial malicious patterns for android malware detection. Comput Secur 92:101743CrossRef
11.
Zurück zum Zitat Noorbehbahani, F., Rasouli, F., & Saberi, M. (2019, August). Analysis of machine learning techniques for ransomware detection. In 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC) (pp. 128-133). IEEE Noorbehbahani, F., Rasouli, F., & Saberi, M. (2019, August). Analysis of machine learning techniques for ransomware detection. In 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC) (pp. 128-133). IEEE
13.
Zurück zum Zitat Chen R, Li Y, Fang W (2019) Android malware identification based on traffic analysis. In: International conference on artificial intelligence and security, July 2019. Springer, Cham, pp 293–303 Chen R, Li Y, Fang W (2019) Android malware identification based on traffic analysis. In: International conference on artificial intelligence and security, July 2019. Springer, Cham, pp 293–303
14.
Zurück zum Zitat Singh AK, Wadhwa G, Ahuja M, Soni K, Sharma K (2020) Android malware detection using LSI-based reduced opcode feature vector. Procedia Comput Sci 173:291–298CrossRef Singh AK, Wadhwa G, Ahuja M, Soni K, Sharma K (2020) Android malware detection using LSI-based reduced opcode feature vector. Procedia Comput Sci 173:291–298CrossRef
15.
Zurück zum Zitat Kumar P, Gupta GP, Tripathi R (2021) Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for IoT networks. Arab J Sci Eng 46(3):3749–3778CrossRef Kumar P, Gupta GP, Tripathi R (2021) Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for IoT networks. Arab J Sci Eng 46(3):3749–3778CrossRef
16.
Zurück zum Zitat Kumar P, Gupta GP, Tripathi R (2021) Design of anomaly-based intrusion detection system using fog computing for IoT network. Autom Control Comput Sci 55(2):137–147CrossRef Kumar P, Gupta GP, Tripathi R (2021) Design of anomaly-based intrusion detection system using fog computing for IoT network. Autom Control Comput Sci 55(2):137–147CrossRef
Metadaten
Titel
A Hybrid Feature Selection Approach-Based Android Malware Detection Framework Using Machine Learning Techniques
verfasst von
Santosh K. Smmarwar
Govind P. Gupta
Sanjay Kumar
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8664-1_30

Neuer Inhalt