Skip to main content
Erschienen in: The Journal of Supercomputing 7/2018

12.04.2018

A hybrid GPU cluster and volunteer computing platform for scalable deep learning

verfasst von: Ekasit Kijsipongse, Apivadee Piyatumrong, Suriya U-ruekolan

Erschienen in: The Journal of Supercomputing | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning is a very computing-intensive and time-consuming task. It needs an amount of computing resource much greater than a single machine can afford to train a sophisticated model within a reasonable time. Normally, GPU clusters are required to reduce the training time of a deep learning model from days to hours. However, building large dedicated GPU clusters is not always feasible or even ineffective for most organizations due to the cost of purchasing, operation and maintenance while such systems are not fully utilized all the time. In this regard, volunteer computing can address this problem as it provides additional computing resources at less or no cost. This work presents the hybrid cluster and volunteer computing platform that scales out GPU clusters into volunteer computing for distributed deep learning. The owners of the machines contribute unused computing resources on their computers to extend the capability of the GPU cluster. The challenge is to seamlessly align the differences between GPU cluster and volunteer computing systems so as to ensure the scalability transparency, whereas performance is also another major concern. We validate the proposed work with two well-known sample cases. The results show an efficient use of our hybrid platform at sub-linear speedup.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Enabling Grids for E-sciencE (EGEE) has become a part of European Grid Infrastructure (EGI) [4]
 
Literatur
8.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, OSDI’16, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, OSDI’16, pp 265–283
9.
Zurück zum Zitat Altintas I, Berkley C, Jaeger E, Jones M, Ludscher B, Mock S (2004) Kepler: towards a grid-enabled system for scientific workflows. In: Proceedings of the Workflow in Grid Systems Workshop in The Tenth Global Grid Forum (GGF-10) Altintas I, Berkley C, Jaeger E, Jones M, Ludscher B, Mock S (2004) Kepler: towards a grid-enabled system for scientific workflows. In: Proceedings of the Workflow in Grid Systems Workshop in The Tenth Global Grid Forum (GGF-10)
10.
Zurück zum Zitat Anderson DP (2004) BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (Grid), pp 4–10 Anderson DP (2004) BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (Grid), pp 4–10
11.
Zurück zum Zitat Anderson DP, Fedak G (2006) The computational and storage potential of volunteer computing. In: Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium, pp 73–80 Anderson DP, Fedak G (2006) The computational and storage potential of volunteer computing. In: Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium, pp 73–80
14.
Zurück zum Zitat Cappello F, Djilali S, Fedak G, Herault T, Magniette F, Néri V, Lodygensky O (2005) Computing on large-scale distributed systems: Xtrem web architecture, programming models, security, tests and convergence with grid. Future Gener Comput Syst 21(3):417–437CrossRef Cappello F, Djilali S, Fedak G, Herault T, Magniette F, Néri V, Lodygensky O (2005) Computing on large-scale distributed systems: Xtrem web architecture, programming models, security, tests and convergence with grid. Future Gener Comput Syst 21(3):417–437CrossRef
15.
Zurück zum Zitat Chen J, Monga R, Bengio S, Jozefowicz R (2016) Revisiting distributed synchronous SGD. In: Proceedings of the ICLR Workshop Chen J, Monga R, Bengio S, Jozefowicz R (2016) Revisiting distributed synchronous SGD. In: Proceedings of the ICLR Workshop
16.
Zurück zum Zitat Chilimbi T, Suzue Y, Apacible J, Kalyanaraman K (2014) Project Adam: building an efficient and scalable deep learning training system. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pp 571–582 Chilimbi T, Suzue Y, Apacible J, Kalyanaraman K (2014) Project Adam: building an efficient and scalable deep learning training system. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pp 571–582
17.
Zurück zum Zitat Coates A, Huval B, Wang T, Wu DJ, Catanzaro BC, Ng AY (2013) Deep learning with COTS HPC systems. In: Proceedings of the 30th International Conference on Machine Learning (ICML) Coates A, Huval B, Wang T, Wu DJ, Catanzaro BC, Ng AY (2013) Deep learning with COTS HPC systems. In: Proceedings of the 30th International Conference on Machine Learning (ICML)
19.
Zurück zum Zitat Cong G, Bhardwaj O (2017) A hierarchical, bulk-synchronous stochastic gradient descent algorithm for deep-learning applications on gpu clusters. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp 818–821 Cong G, Bhardwaj O (2017) A hierarchical, bulk-synchronous stochastic gradient descent algorithm for deep-learning applications on gpu clusters. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp 818–821
20.
Zurück zum Zitat Cui H, Zhang H, Ganger GR, Gibbons PB, Xing EP (2016) GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys) Cui H, Zhang H, Ganger GR, Gibbons PB, Xing EP (2016) GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys)
21.
Zurück zum Zitat Dean J, Corrado G, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior AW, Tucker PA, Yang K, Ng AY (2012) Large scale distributed deep networks. In: Conference on Neural Information Processing Systems (NIPS), pp 1232–1240 Dean J, Corrado G, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior AW, Tucker PA, Yang K, Ng AY (2012) Large scale distributed deep networks. In: Conference on Neural Information Processing Systems (NIPS), pp 1232–1240
22.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition. IEEE Conference on CVPR 2009 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition. IEEE Conference on CVPR 2009
23.
Zurück zum Zitat Desell T (2017) Large scale evolution of convolutional neural networks using volunteer computing. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ’17, pp 127–128, https://doi.org/10.1145/3067695.3076002 Desell T (2017) Large scale evolution of convolutional neural networks using volunteer computing. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, GECCO ’17, pp 127–128, https://​doi.​org/​10.​1145/​3067695.​3076002
25.
Zurück zum Zitat Farkas Z, Kacsuk P, Balaton Z, Gombás G (2010) Interoperability of BOINC and EGEE. Future Gener Comput Syst 26(8):1092–1103CrossRef Farkas Z, Kacsuk P, Balaton Z, Gombás G (2010) Interoperability of BOINC and EGEE. Future Gener Comput Syst 26(8):1092–1103CrossRef
26.
Zurück zum Zitat Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inf 35(1):3–14CrossRef Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inf 35(1):3–14CrossRef
28.
Zurück zum Zitat Gupta S, Zhang W, Wang F (2017) Model accuracy and runtime tradeoff in distributed deep learning: a systematic study. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp 4854–4858 Gupta S, Zhang W, Wang F (2017) Model accuracy and runtime tradeoff in distributed deep learning: a systematic study. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp 4854–4858
29.
Zurück zum Zitat Hannun AY, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates A, Ng AY (2014) Deep speech: scaling up end-to-end speech recognition. arxiv:1412.5567 Hannun AY, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates A, Ng AY (2014) Deep speech: scaling up end-to-end speech recognition. arxiv:​1412.​5567
30.
Zurück zum Zitat Iandola FN, Moskewicz MW, Ashraf K, Keutzer K (2016) FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In: The 29th IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Iandola FN, Moskewicz MW, Ashraf K, Keutzer K (2016) FireCaffe: near-linear acceleration of deep neural network training on compute clusters. In: The 29th IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)
31.
Zurück zum Zitat Javadi B, Kondo D, Vincent JM, Anderson DP (2009) Mining for statistical models of availability in large-scale distributed systems: an empirical study of SETI@home. In: 2009 IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems Javadi B, Kondo D, Vincent JM, Anderson DP (2009) Mining for statistical models of availability in large-scale distributed systems: an empirical study of SETI@home. In: 2009 IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems
32.
Zurück zum Zitat Javadi B, Kondo D, Vincent JM, Anderson DP (2011) Discovering statistical models of availability in large distributed systems: an empirical study of SETI@home. IEEE Trans Parallel Distrib Syst 22(11):1896–1903CrossRef Javadi B, Kondo D, Vincent JM, Anderson DP (2011) Discovering statistical models of availability in large distributed systems: an empirical study of SETI@home. IEEE Trans Parallel Distrib Syst 22(11):1896–1903CrossRef
33.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22Nd ACM International Conference on Multimedia, pp 675–678 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22Nd ACM International Conference on Multimedia, pp 675–678
34.
Zurück zum Zitat Jin PH, Yuan Q, Iandola F, Keutzer K (2016) How to scale distributed deep learning? In: NIPS Workshop on Machine Learning Systems Jin PH, Yuan Q, Iandola F, Keutzer K (2016) How to scale distributed deep learning? In: NIPS Workshop on Machine Learning Systems
35.
Zurück zum Zitat Kacsuk P, Farkas Z, Fedak G (2008) Towards making BOINC and EGEE interoperable. In: eScience, 2008. IEEE Fourth International Conference on eScience ’08, pp 478–484 Kacsuk P, Farkas Z, Fedak G (2008) Towards making BOINC and EGEE interoperable. In: eScience, 2008. IEEE Fourth International Conference on eScience ’08, pp 478–484
36.
Zurück zum Zitat Kijsipongse E, Assawamekin N (2014) Improving the communication performance of distributed animation rendering using bittorrent file system. J Syst Softw 97(C):178–191CrossRef Kijsipongse E, Assawamekin N (2014) Improving the communication performance of distributed animation rendering using bittorrent file system. J Syst Softw 97(C):178–191CrossRef
37.
Zurück zum Zitat Kijsipongse E, U-ruekolan S (2013) Scaling HPC clusters with volunteer computing for data intensive applications. In: Computer Science and Software Engineering (JCSSE), 2013 10th International Joint Conference, pp 138–142 Kijsipongse E, U-ruekolan S (2013) Scaling HPC clusters with volunteer computing for data intensive applications. In: Computer Science and Software Engineering (JCSSE), 2013 10th International Joint Conference, pp 138–142
38.
Zurück zum Zitat Kondo D, Fedak G, Cappello F, Chien AA, Casanova H (2007) Characterizing resource availability in enterprise desktop grids. Future Gen Comput Syst 23(7):888–903CrossRef Kondo D, Fedak G, Cappello F, Chien AA, Casanova H (2007) Characterizing resource availability in enterprise desktop grids. Future Gen Comput Syst 23(7):888–903CrossRef
39.
Zurück zum Zitat Konecn J, McMahan HB, Yu FX, Richtrik P, Suresh AT, Bacon D (2016) Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning Konecn J, McMahan HB, Yu FX, Richtrik P, Suresh AT, Bacon D (2016) Federated learning: strategies for improving communication efficiency. In: NIPS Workshop on Private Multi-Party Machine Learning
40.
Zurück zum Zitat Korambath P, Wang J, Kumar A, Hochstein L, Schott B, Graybill RB, Baldea M, Davis J (2014) Deploying Kepler workflows as services on a cloud infrastructure for smart manufacturing. In: Proceedings of the International Conference on Computational Science, ICCS 2014, pp 2254–2259 Korambath P, Wang J, Kumar A, Hochstein L, Schott B, Graybill RB, Baldea M, Davis J (2014) Deploying Kepler workflows as services on a cloud infrastructure for smart manufacturing. In: Proceedings of the International Conference on Computational Science, ICCS 2014, pp 2254–2259
41.
Zurück zum Zitat Kovács J, Marosi AC, Visegrádi A, Farkas Z, Kacsuk P, Lovas R (2015) Boosting gLite with cloud augmented volunteer computing. Future Gen Comput Syst 43(C):12–23CrossRef Kovács J, Marosi AC, Visegrádi A, Farkas Z, Kacsuk P, Lovas R (2015) Boosting gLite with cloud augmented volunteer computing. Future Gen Comput Syst 43(C):12–23CrossRef
42.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, pp 1097–1105
43.
Zurück zum Zitat Lee K, Son M (2017) Deepspotcloud: Leveraging cross-region gpu spot instances for deep learning. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp 98–105 Lee K, Son M (2017) Deepspotcloud: Leveraging cross-region gpu spot instances for deep learning. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp 98–105
44.
Zurück zum Zitat Li M, Andersen DG, Park JW, Smola AJ, Ahmed A, Josifovski V, Long J, Shekita EJ, Su BY (2014) Scaling distributed machine learning with the parameter server. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pp 583–598 Li M, Andersen DG, Park JW, Smola AJ, Ahmed A, Josifovski V, Long J, Shekita EJ, Su BY (2014) Scaling distributed machine learning with the parameter server. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pp 583–598
45.
Zurück zum Zitat Lin M, Chen Q, Yan S (2014) Network in network. In: Proceedings of the International Conference on Learning Representations (ICLR) Lin M, Chen Q, Yan S (2014) Network in network. In: Proceedings of the International Conference on Learning Representations (ICLR)
46.
Zurück zum Zitat Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and the kepler system: research articles. Concurr Comput Pract Exp 18(10):1039–1065CrossRef Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and the kepler system: research articles. Concurr Comput Pract Exp 18(10):1039–1065CrossRef
47.
Zurück zum Zitat Moritz P, Nishihara R, Stoica I, Jordan MI (2016) Sparknet: training deep networks in spark. In: International Conference on Learning Representations (ICLR) Moritz P, Nishihara R, Stoica I, Jordan MI (2016) Sparknet: training deep networks in spark. In: International Conference on Learning Representations (ICLR)
48.
Zurück zum Zitat Myers DS, Bazinet AL, Cummings MP (2007) Expanding the reach of grid computing: combining globus- and BOINC-based systems. In: Zomaya AY, Talbi EG (eds) Grid computing for bioinformatics and computational biology. Wiley, New York, pp 71–85CrossRef Myers DS, Bazinet AL, Cummings MP (2007) Expanding the reach of grid computing: combining globus- and BOINC-based systems. In: Zomaya AY, Talbi EG (eds) Grid computing for bioinformatics and computational biology. Wiley, New York, pp 71–85CrossRef
50.
Zurück zum Zitat Shehab M, Al-Ayyoub M, Jararweh Y, Jarrah M (2017) Accelerating compute-intensive image segmentation algorithms using gpus. J Supercomput 73(5):1929–1951CrossRef Shehab M, Al-Ayyoub M, Jararweh Y, Jarrah M (2017) Accelerating compute-intensive image segmentation algorithms using gpus. J Supercomput 73(5):1929–1951CrossRef
52.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
54.
Zurück zum Zitat Urbah E, Kacsuk P, Farkas Z, Fedak G, Kecskemeti G, Lodygensky O, Marosi A, Balaton Z, Caillat G, Gombas G, Kornafeld A, Kovacs J, He H, Lovas R (2009) EDGeS: bridging EGEE to BOINC and XtremWeb. J Grid Comput 7:335–354CrossRef Urbah E, Kacsuk P, Farkas Z, Fedak G, Kecskemeti G, Lodygensky O, Marosi A, Balaton Z, Caillat G, Gombas G, Kornafeld A, Kovacs J, He H, Lovas R (2009) EDGeS: bridging EGEE to BOINC and XtremWeb. J Grid Comput 7:335–354CrossRef
55.
Zurück zum Zitat Vouzis PD, Sahinidis NV (2011) Gpu-blast: using graphics processors to accelerate protein sequence alignment. PMC 27:182–188 Vouzis PD, Sahinidis NV (2011) Gpu-blast: using graphics processors to accelerate protein sequence alignment. PMC 27:182–188
56.
Zurück zum Zitat Wang J, Altintas I (2012) Early cloud experiences with the Kepler scientific workflow system. In: Proceedings of the International Conference on Computational Science, ICCS 2012, pp 1630–1634 Wang J, Altintas I (2012) Early cloud experiences with the Kepler scientific workflow system. In: Proceedings of the International Conference on Computational Science, ICCS 2012, pp 1630–1634
57.
Zurück zum Zitat Wang Y, Zhang L, Ren Y, Zhang W (2017) Nexus: bringing efficient and scalable training to deep learning frameworks. In: 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp 12–21 Wang Y, Zhang L, Ren Y, Zhang W (2017) Nexus: bringing efficient and scalable training to deep learning frameworks. In: 2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp 12–21
58.
Zurück zum Zitat Wingstrom J, Casanova H (2008) Probabilistic allocation of tasks on desktop grids. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium Wingstrom J, Casanova H (2008) Probabilistic allocation of tasks on desktop grids. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium
59.
Zurück zum Zitat Zhang W, Gupta S, Lian X, Liu J (2016) Staleness-aware async-SGD for distributed deep learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), pp 2350–2356 Zhang W, Gupta S, Lian X, Liu J (2016) Staleness-aware async-SGD for distributed deep learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), pp 2350–2356
Metadaten
Titel
A hybrid GPU cluster and volunteer computing platform for scalable deep learning
verfasst von
Ekasit Kijsipongse
Apivadee Piyatumrong
Suriya U-ruekolan
Publikationsdatum
12.04.2018
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 7/2018
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-018-2375-9

Weitere Artikel der Ausgabe 7/2018

The Journal of Supercomputing 7/2018 Zur Ausgabe