Skip to main content
Erschienen in: Journal of Materials Science 19/2015

01.10.2015 | Original Paper

A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite

verfasst von: Binbin Pan, Juanjuan Ma, Xiaobo Zhang, Jinpeng Li, Lin Liu, Dongen Zhang, Min Yang, Zhiwei Tong

Erschienen in: Journal of Materials Science | Ausgabe 19/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laminar nanocomposite of α-ZrP/MnTMPyP, [5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) porphyrinato manganese (III)], was obtained through the self-assembly of α-ZrP nanosheets and manganese porphyrin molecules, namely the exfoliation/restacking route. The final products were characterized by several analytic techniques such as XRD, IR, UV–Vis, and SEM. Meanwhile, the surface charge change of layered zirconium phosphate during the restacking process was monitored by a Zetasizer Nano instrument. The zeta potential value of α-ZrP colloidal dispersion is −40.1 mV, indicating that the colloidal dispersion was stable and well dispersed. The cyclic voltammetry measurements of α-ZrP/MnTMPyP film-modified glass carbon electrode displayed a pair of well-defined oxidation/reduction peaks with redox potentials at −0.256 and −0.197 V with an increase in the peak current compared to MnTMPyP aqueous solution. Furthermore, α-ZrP/MnTMPyP hybrid thin film exhibited excellent electrocatalytic activities toward oxidation of nitrite. The oxidation peak current increased linearly with the square root of scan rate, suggesting that the electrocatalytic process was controlled by nitrite diffusion. Finally, a detection limit of 5.3 × 10−5 M was estimated at a signal-to-noise ratio of 3.0 with a concentration range of 1.5 × 10−4 to 4.76 × 10−3 M.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tong Z et al (2006) Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J Am Chem Soc 128:684–685CrossRef Tong Z et al (2006) Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J Am Chem Soc 128:684–685CrossRef
2.
Zurück zum Zitat Hosogi Y, Kato H, Kudo A (2008) Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. J Phys Chem C 112:17678–17682CrossRef Hosogi Y, Kato H, Kudo A (2008) Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. J Phys Chem C 112:17678–17682CrossRef
3.
Zurück zum Zitat Zhang X et al (2010) Intercalation of methylene blue into layered potassium titanoniobate KTiNbO5: characterization and electrochemical investigation. J Mater Sci 45:1604–1609. doi:10.1007/s10853-009-4134-z CrossRef Zhang X et al (2010) Intercalation of methylene blue into layered potassium titanoniobate KTiNbO5: characterization and electrochemical investigation. J Mater Sci 45:1604–1609. doi:10.​1007/​s10853-009-4134-z CrossRef
4.
Zurück zum Zitat Han J et al (2011) Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. J Mater Chem 21:2126–2130CrossRef Han J et al (2011) Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. J Mater Chem 21:2126–2130CrossRef
5.
Zurück zum Zitat Ma J et al (2014) Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin. Dalton Trans 43:9909–9915CrossRef Ma J et al (2014) Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin. Dalton Trans 43:9909–9915CrossRef
6.
Zurück zum Zitat Clearfield A, Stynes JA (1964) The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem 26:117–129CrossRef Clearfield A, Stynes JA (1964) The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem 26:117–129CrossRef
7.
Zurück zum Zitat Clearfield A (1984) Inorganic ion exchangers with layered structures. Ann Rev Mater Sci 14:205–229CrossRef Clearfield A (1984) Inorganic ion exchangers with layered structures. Ann Rev Mater Sci 14:205–229CrossRef
8.
Zurück zum Zitat Alberti G et al (1996) Layered and pillared metal (IV) phosphates and phosphonates. Adv Mater 8:291–303CrossRef Alberti G et al (1996) Layered and pillared metal (IV) phosphates and phosphonates. Adv Mater 8:291–303CrossRef
9.
Zurück zum Zitat Sun L et al (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17:5606–5609CrossRef Sun L et al (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17:5606–5609CrossRef
10.
Zurück zum Zitat Xiao H et al (2015) Amine-intercalated α-zirconium phosphates as lubricant additives. Appl Surf Sci 329:384–389CrossRef Xiao H et al (2015) Amine-intercalated α-zirconium phosphates as lubricant additives. Appl Surf Sci 329:384–389CrossRef
11.
Zurück zum Zitat Wang H et al (2005) Study on the intercalation and interlayer state of porphyrins into α-zirconium phosphate. J Incl Phenom Macro 52:247–252CrossRef Wang H et al (2005) Study on the intercalation and interlayer state of porphyrins into α-zirconium phosphate. J Incl Phenom Macro 52:247–252CrossRef
12.
Zurück zum Zitat Dilgin Y et al (2005) Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal Chim Acta 542:162–168CrossRef Dilgin Y et al (2005) Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal Chim Acta 542:162–168CrossRef
13.
Zurück zum Zitat Liu Y et al (2008) Direct electron transfer of hemoglobin in layered α-zirconium phosphate with a high thermal stability. Anal Biochem 375:27–34CrossRef Liu Y et al (2008) Direct electron transfer of hemoglobin in layered α-zirconium phosphate with a high thermal stability. Anal Biochem 375:27–34CrossRef
14.
Zurück zum Zitat Kumar CV, Chaudhari A (2002) High temperature peroxidase activities of HRP and hemoglobin in the galleries of layered Zr (IV) phosphate. Chem Commun 20:2382–2383CrossRef Kumar CV, Chaudhari A (2002) High temperature peroxidase activities of HRP and hemoglobin in the galleries of layered Zr (IV) phosphate. Chem Commun 20:2382–2383CrossRef
15.
Zurück zum Zitat Bhambhani A, Kumar CV (2006) Tuning the properties of Hb intercalated in the galleries of α-ZrP with ionic strength: improved structure retention and enhanced activity. Chem Mater 18:740–747CrossRef Bhambhani A, Kumar CV (2006) Tuning the properties of Hb intercalated in the galleries of α-ZrP with ionic strength: improved structure retention and enhanced activity. Chem Mater 18:740–747CrossRef
16.
Zurück zum Zitat Díaz A et al (2010) Nanoencapsulation of insulin into zirconium phosphate for oral delivery applications. Biomacromolecules 11:2465–2470CrossRef Díaz A et al (2010) Nanoencapsulation of insulin into zirconium phosphate for oral delivery applications. Biomacromolecules 11:2465–2470CrossRef
17.
Zurück zum Zitat Mosby BM et al (2013) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6:585–592CrossRef Mosby BM et al (2013) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6:585–592CrossRef
18.
Zurück zum Zitat Mosby BM et al (2014) Designable architectures on nanoparticle surfaces: zirconium phosphate nanoplatelets as a platform for tetravalent metal and phosphonic acid assemblies. Langmuir 30:2513–2521CrossRef Mosby BM et al (2014) Designable architectures on nanoparticle surfaces: zirconium phosphate nanoplatelets as a platform for tetravalent metal and phosphonic acid assemblies. Langmuir 30:2513–2521CrossRef
19.
Zurück zum Zitat Troup JM, Clearfield A (1977) Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of alpha-zirconium phosphate. Inorg Chem 16:3311–3314CrossRef Troup JM, Clearfield A (1977) Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of alpha-zirconium phosphate. Inorg Chem 16:3311–3314CrossRef
20.
Zurück zum Zitat Dias PM, De Faria DLA, Constantino VRL (2000) Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J Incl Phenom Macro 38:251–266CrossRef Dias PM, De Faria DLA, Constantino VRL (2000) Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J Incl Phenom Macro 38:251–266CrossRef
22.
Zurück zum Zitat Tong Z, Shichi T, Takagi K (2002) Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B 106:13306–13310CrossRef Tong Z, Shichi T, Takagi K (2002) Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B 106:13306–13310CrossRef
23.
Zurück zum Zitat Kameyama H et al (2006) Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. J Mol Catal A-chem 258:172–177CrossRef Kameyama H et al (2006) Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. J Mol Catal A-chem 258:172–177CrossRef
24.
Zurück zum Zitat Kaschak DM et al (1999) Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: toward an inorganic “leaf”. J Am Chem Soc 121:3435–3445CrossRef Kaschak DM et al (1999) Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: toward an inorganic “leaf”. J Am Chem Soc 121:3435–3445CrossRef
26.
Zurück zum Zitat Shao F et al (2013) Synthesis and electrochemical properties study of novel intercalation compound of KCa2Nb3O10 with cationic methylene blue. Micro Nano Lett 8:788–791CrossRef Shao F et al (2013) Synthesis and electrochemical properties study of novel intercalation compound of KCa2Nb3O10 with cationic methylene blue. Micro Nano Lett 8:788–791CrossRef
27.
Zurück zum Zitat Guo X et al (2005) Synthesis of a novel super-microporous layered material and its catalytic application in the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Micropor Mesopor Mat 80:269–274CrossRef Guo X et al (2005) Synthesis of a novel super-microporous layered material and its catalytic application in the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Micropor Mesopor Mat 80:269–274CrossRef
28.
Zurück zum Zitat Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRef Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571CrossRef
29.
Zurück zum Zitat Liu Z et al (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880CrossRef Liu Z et al (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880CrossRef
30.
Zurück zum Zitat Liu Z et al (2007) General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23:861–867CrossRef Liu Z et al (2007) General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23:861–867CrossRef
32.
Zurück zum Zitat Yu J et al (2015) One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 7:9448–9451CrossRef Yu J et al (2015) One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 7:9448–9451CrossRef
33.
Zurück zum Zitat Oshima T et al (2015) Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew Chem Int Edit 54:2698–2702CrossRef Oshima T et al (2015) Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew Chem Int Edit 54:2698–2702CrossRef
34.
Zurück zum Zitat Zhai Z et al (2012) Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale 4:547–556CrossRef Zhai Z et al (2012) Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale 4:547–556CrossRef
35.
Zurück zum Zitat Zhang L et al (2013) S-doped HTiNbO5 nanosheets: a novel efficient visible-light photocatalyst. Chin J Catal 34:2089–2097CrossRef Zhang L et al (2013) S-doped HTiNbO5 nanosheets: a novel efficient visible-light photocatalyst. Chin J Catal 34:2089–2097CrossRef
36.
Zurück zum Zitat Takei T et al (2006) Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films. J Am Chem Soc 128:16634–16640CrossRef Takei T et al (2006) Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films. J Am Chem Soc 128:16634–16640CrossRef
37.
Zurück zum Zitat Kaschak DM et al (1998) Chemistry on the edge: a microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of α-zirconium phosphate. J Am Chem Soc 120:10887–10894CrossRef Kaschak DM et al (1998) Chemistry on the edge: a microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of α-zirconium phosphate. J Am Chem Soc 120:10887–10894CrossRef
38.
Zurück zum Zitat Kim HN et al (1997) Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions. Chem Mater 9:1414–1421CrossRef Kim HN et al (1997) Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions. Chem Mater 9:1414–1421CrossRef
39.
Zurück zum Zitat Sun L et al (2007) Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater 19:1749–1754CrossRef Sun L et al (2007) Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater 19:1749–1754CrossRef
40.
Zurück zum Zitat Zhang X et al (2014) A manganese porphyrin intercalated lanthanum niobic acid nanocomposite utilized for electrocatalytic oxidation of nitrite. ECS Electrochem Lett 3:H17–H19CrossRef Zhang X et al (2014) A manganese porphyrin intercalated lanthanum niobic acid nanocomposite utilized for electrocatalytic oxidation of nitrite. ECS Electrochem Lett 3:H17–H19CrossRef
41.
Zurück zum Zitat Alberti G, Torracca E (1968) Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J Inorg Nucl Chem 30:317–318CrossRef Alberti G, Torracca E (1968) Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J Inorg Nucl Chem 30:317–318CrossRef
42.
Zurück zum Zitat Ma J et al (2015) Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater Lett 150:122–125CrossRef Ma J et al (2015) Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater Lett 150:122–125CrossRef
43.
Zurück zum Zitat Park IY, Kuroda K, Kato C (1989) Preparation of a layered double hydroxide-porphyrin intercalation compound. Chem Lett 11:2057–2058CrossRef Park IY, Kuroda K, Kato C (1989) Preparation of a layered double hydroxide-porphyrin intercalation compound. Chem Lett 11:2057–2058CrossRef
44.
Zurück zum Zitat Barloy L et al (1992) Manganese porphyrins adsorbed or intercalated in different mineral matrices: preparation and compared properties as catalysts for alkene and alkane oxidation. Mater Sci Forum 91:838CrossRef Barloy L et al (1992) Manganese porphyrins adsorbed or intercalated in different mineral matrices: preparation and compared properties as catalysts for alkene and alkane oxidation. Mater Sci Forum 91:838CrossRef
45.
Zurück zum Zitat Halma M et al (2009) Immobilization of anionic iron (III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. J Mol Catal A 310:42–50CrossRef Halma M et al (2009) Immobilization of anionic iron (III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. J Mol Catal A 310:42–50CrossRef
46.
Zurück zum Zitat Halma M et al (2008) Synthesis, characterization, and catalytic activity of anionic iron (III) porphyrins intercalated into layered double hydroxides. J Catal 257:233–243CrossRef Halma M et al (2008) Synthesis, characterization, and catalytic activity of anionic iron (III) porphyrins intercalated into layered double hydroxides. J Catal 257:233–243CrossRef
47.
Zurück zum Zitat Zhang X et al (2013) Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J Solid State Electr 17:3177–3184CrossRef Zhang X et al (2013) Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J Solid State Electr 17:3177–3184CrossRef
48.
Zurück zum Zitat Armijo F et al (2007) Electrocatalytic oxidation of nitrite to nitrate mediated by Fe(III) poly-3-aminophenyl porphyrin grown on five different electrode surface. J Mol Catal A 268:148–154CrossRef Armijo F et al (2007) Electrocatalytic oxidation of nitrite to nitrate mediated by Fe(III) poly-3-aminophenyl porphyrin grown on five different electrode surface. J Mol Catal A 268:148–154CrossRef
49.
Zurück zum Zitat Zuo G et al (2007) Study of orientation mode of cobalt-porphyrin on the surface of gold electrode by electrocatalytic dioxygen reduction. J Mol Catal A 269:46–52CrossRef Zuo G et al (2007) Study of orientation mode of cobalt-porphyrin on the surface of gold electrode by electrocatalytic dioxygen reduction. J Mol Catal A 269:46–52CrossRef
Metadaten
Titel
A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite
verfasst von
Binbin Pan
Juanjuan Ma
Xiaobo Zhang
Jinpeng Li
Lin Liu
Dongen Zhang
Min Yang
Zhiwei Tong
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9205-8

Weitere Artikel der Ausgabe 19/2015

Journal of Materials Science 19/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.