Skip to main content
Erschienen in: Engineering with Computers 1/2020

07.02.2019 | Original Article

A localized RBF-MLPG method and its application to elliptic PDEs

verfasst von: Mansour Safarpoor, Fariba Takhtabnoos, Ahmad Shirzadi

Erschienen in: Engineering with Computers | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The existing local RBF methods use the strong form equation and approximate the solution in local subdomains instead of the whole domain. In the RBF-MLPG method, the unknown solution is approximated by RBFs in the whole domain and testing is done by constructing the weak-form equations over the local subdomains. This paper proposes to approximate the unknown solution locally in the RBF-MLPG method, i.e., in the localized RBF-MLPG method, both solution approximation and testing are treated locally. As a result, the final global matrix becomes sparser and more accurate solutions can be obtained. The method is applied for the numerical solution of elliptic PDEs. The comparison of the results demonstrates the effectiveness of the method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Poljak D, Brebbia CA (2004) Indirect Galerkin–Bubnov boundary element method for solving integral equations in electromagnetics. Eng Anal Bound Elem 28(7):771–777CrossRef Poljak D, Brebbia CA (2004) Indirect Galerkin–Bubnov boundary element method for solving integral equations in electromagnetics. Eng Anal Bound Elem 28(7):771–777CrossRef
2.
Zurück zum Zitat Ochiai Y, Sladek V, Sladek J (2006) Transient heat conduction analysis by triple-reciprocity boundary element method. Eng Anal Bound Elem 30(3):194–204CrossRef Ochiai Y, Sladek V, Sladek J (2006) Transient heat conduction analysis by triple-reciprocity boundary element method. Eng Anal Bound Elem 30(3):194–204CrossRef
3.
Zurück zum Zitat Dehghan M, Shirzadi M (2015) The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations. Eng Anal Bound Elem 58:99–111MathSciNetCrossRef Dehghan M, Shirzadi M (2015) The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations. Eng Anal Bound Elem 58:99–111MathSciNetCrossRef
4.
Zurück zum Zitat Cheng AH-D, Cheng DT (2005) Heritage and early history of the boundary element method. Eng Anal Bound Elem 29(3):268–302CrossRef Cheng AH-D, Cheng DT (2005) Heritage and early history of the boundary element method. Eng Anal Bound Elem 29(3):268–302CrossRef
5.
Zurück zum Zitat Karamali G, Dehghan M, Abbaszadeh M (2018) Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Eng Comput 35:87–100CrossRef Karamali G, Dehghan M, Abbaszadeh M (2018) Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Eng Comput 35:87–100CrossRef
6.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross–Pitaevskii equation. Eng Comput 33(4):983–996CrossRef Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross–Pitaevskii equation. Eng Comput 33(4):983–996CrossRef
7.
Zurück zum Zitat Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180MathSciNetCrossRef Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180MathSciNetCrossRef
8.
Zurück zum Zitat Esfahani MH, Ghehsareh HR, Etesami SK (2017) A meshless method for the investigation of electromagnetic scattering from arbitrary shaped anisotropic cylindrical objects. J Electromagn Waves Appl 31(5):477–494CrossRef Esfahani MH, Ghehsareh HR, Etesami SK (2017) A meshless method for the investigation of electromagnetic scattering from arbitrary shaped anisotropic cylindrical objects. J Electromagn Waves Appl 31(5):477–494CrossRef
9.
Zurück zum Zitat Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations. Eng Anal Bound Elem 36:1522–1527MathSciNetCrossRef Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations. Eng Anal Bound Elem 36:1522–1527MathSciNetCrossRef
10.
Zurück zum Zitat Mirzaei D, Schaback R (2014) Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method. Numer Algorithms 65:275–291MathSciNetCrossRef Mirzaei D, Schaback R (2014) Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method. Numer Algorithms 65:275–291MathSciNetCrossRef
11.
Zurück zum Zitat Takhtabnoos F, Shirzadi A (2017) A local meshless method based on the finite collocation and local integral equations method for delay PDEs. Eng Anal Bound Elem 83(Supplement C):67–73MathSciNetCrossRef Takhtabnoos F, Shirzadi A (2017) A local meshless method based on the finite collocation and local integral equations method for delay PDEs. Eng Anal Bound Elem 83(Supplement C):67–73MathSciNetCrossRef
12.
Zurück zum Zitat Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257MathSciNetCrossRef Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257MathSciNetCrossRef
13.
Zurück zum Zitat Shivanian E, Jafarabadi A (2018) Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90CrossRef Shivanian E, Jafarabadi A (2018) Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90CrossRef
14.
Zurück zum Zitat Lee CK, King C, Fan SC (2003) Local multiquadric approximation for solving boundary value problems. Comput Mech 30:396–409MathSciNetCrossRef Lee CK, King C, Fan SC (2003) Local multiquadric approximation for solving boundary value problems. Comput Mech 30:396–409MathSciNetCrossRef
15.
Zurück zum Zitat Shirzadi A, Takhtabnoos F (2016) A local meshless method for Cauchy problem of elliptic PDEs in annulus domains. Inverse Probl Sci Eng 24(5):729–743MathSciNetCrossRef Shirzadi A, Takhtabnoos F (2016) A local meshless method for Cauchy problem of elliptic PDEs in annulus domains. Inverse Probl Sci Eng 24(5):729–743MathSciNetCrossRef
16.
Zurück zum Zitat Jackson S, Stevens D, Giddings D, Power H (2016) An adaptive RBF finite collocation approach to track transport processes across moving fronts. Comput Math Appl 71:278–300MathSciNetCrossRef Jackson S, Stevens D, Giddings D, Power H (2016) An adaptive RBF finite collocation approach to track transport processes across moving fronts. Comput Math Appl 71:278–300MathSciNetCrossRef
17.
Zurück zum Zitat Shirzadi A, Takhtabnoos F (2015) A local meshless collocation method for solving Landau–Lifschitz–Gilbert equation. Eng Anal Bound Elem 61:104–113MathSciNetCrossRef Shirzadi A, Takhtabnoos F (2015) A local meshless collocation method for solving Landau–Lifschitz–Gilbert equation. Eng Anal Bound Elem 61:104–113MathSciNetCrossRef
18.
Zurück zum Zitat Stevens D, Power H (2015) The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. J Comput Phys 298:423–445MathSciNetCrossRef Stevens D, Power H (2015) The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. J Comput Phys 298:423–445MathSciNetCrossRef
19.
Zurück zum Zitat Takhtabnoos F, Shirzadi A (2016) A new implementation of the finite collocation method for time dependent PDEs. Eng Anal Bound Elem 63:114–124MathSciNetCrossRef Takhtabnoos F, Shirzadi A (2016) A new implementation of the finite collocation method for time dependent PDEs. Eng Anal Bound Elem 63:114–124MathSciNetCrossRef
20.
Zurück zum Zitat Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33(4):853–870CrossRef Assari P, Dehghan M (2017) The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng Comput 33(4):853–870CrossRef
21.
Zurück zum Zitat Assari P, Dehghan M (2019) Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels. Eng Comput 35(1):175–190CrossRef Assari P, Dehghan M (2019) Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels. Eng Comput 35(1):175–190CrossRef
22.
Zurück zum Zitat Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetCrossRef Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl Numer Math 123:137–158MathSciNetCrossRef
25.
Zurück zum Zitat Shivanian E, Jafarabadi A (2018) Capillary formation in tumor angiogenesis through meshless weak and strong local radial point interpolation. Eng Comput 34(3):603–619CrossRef Shivanian E, Jafarabadi A (2018) Capillary formation in tumor angiogenesis through meshless weak and strong local radial point interpolation. Eng Comput 34(3):603–619CrossRef
26.
Zurück zum Zitat Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32(2):331–342CrossRef Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32(2):331–342CrossRef
27.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef
28.
Zurück zum Zitat Ghehsareh HR, Zaghian A, Raei M (2018) A local weak form meshless method to simulate a variable order time-fractional mobile–immobile transport model. Eng Anal Bound Elem 90:63–75MathSciNetCrossRef Ghehsareh HR, Zaghian A, Raei M (2018) A local weak form meshless method to simulate a variable order time-fractional mobile–immobile transport model. Eng Anal Bound Elem 90:63–75MathSciNetCrossRef
29.
Zurück zum Zitat Ghehsareh HR, Zaghian A, Zabetzadeh SM (2018) The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation. Neural Comput Appl 29(10):745–754CrossRef Ghehsareh HR, Zaghian A, Zabetzadeh SM (2018) The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation. Neural Comput Appl 29(10):745–754CrossRef
30.
Zurück zum Zitat Azarnavid B, Parand K, Abbasbandy S (2018) An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition. Commun Nonlinear Sci Numer Simul 59:544–552MathSciNetCrossRef Azarnavid B, Parand K, Abbasbandy S (2018) An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition. Commun Nonlinear Sci Numer Simul 59:544–552MathSciNetCrossRef
31.
Zurück zum Zitat Schaback R (2003) On the versatility of meshless kernel methods. In: Advances in computational & experimental engineering & sciences, vol 428 Schaback R (2003) On the versatility of meshless kernel methods. In: Advances in computational & experimental engineering & sciences, vol 428
32.
Zurück zum Zitat Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Math 192:941–954MATH Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Math 192:941–954MATH
33.
Zurück zum Zitat Vertnik R, arler B (2006) Meshless local radial basis function collocation method for convective–diffusive solid–liquid phase change problems. Int J Numer Methods Heat Fluid Flow 16:617–640MathSciNetCrossRef Vertnik R, arler B (2006) Meshless local radial basis function collocation method for convective–diffusive solid–liquid phase change problems. Int J Numer Methods Heat Fluid Flow 16:617–640MathSciNetCrossRef
34.
Zurück zum Zitat Zahab ZE, Divo E, Kassab AJ (2009) A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics. Eng Anal Bound Elem 33:1045–1061MathSciNetCrossRef Zahab ZE, Divo E, Kassab AJ (2009) A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics. Eng Anal Bound Elem 33:1045–1061MathSciNetCrossRef
35.
Zurück zum Zitat Shirzadi A, Ling L (2013) Convergent overdetermined-RBF-MLPG for solving second order elliptic PDEs. Adv Appl Math Mech 5:78–89MathSciNetCrossRef Shirzadi A, Ling L (2013) Convergent overdetermined-RBF-MLPG for solving second order elliptic PDEs. Adv Appl Math Mech 5:78–89MathSciNetCrossRef
36.
Zurück zum Zitat Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ Equ 32(3):847–861MathSciNetCrossRef Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ Equ 32(3):847–861MathSciNetCrossRef
37.
Zurück zum Zitat Schaback R (2013) Direct discretizations with applications to meshless methods for PDEs. In: Proceedings of DWCAA12, vol 6, pp 37–50 Schaback R (2013) Direct discretizations with applications to meshless methods for PDEs. In: Proceedings of DWCAA12, vol 6, pp 37–50
38.
Zurück zum Zitat Mirzaei D, Schaback R (2013) Direct meshless local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl Numer Math 68:73–82MathSciNetCrossRef Mirzaei D, Schaback R (2013) Direct meshless local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl Numer Math 68:73–82MathSciNetCrossRef
39.
Zurück zum Zitat Zhang X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26(4):333–343CrossRef Zhang X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26(4):333–343CrossRef
40.
Zurück zum Zitat Timoshenko SP, Goodier JN (1951) Theory of elasticity, vol 412. McGraw-Hill, New York, p 108MATH Timoshenko SP, Goodier JN (1951) Theory of elasticity, vol 412. McGraw-Hill, New York, p 108MATH
Metadaten
Titel
A localized RBF-MLPG method and its application to elliptic PDEs
verfasst von
Mansour Safarpoor
Fariba Takhtabnoos
Ahmad Shirzadi
Publikationsdatum
07.02.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2020
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-00692-y

Weitere Artikel der Ausgabe 1/2020

Engineering with Computers 1/2020 Zur Ausgabe

Neuer Inhalt