Skip to main content
Erschienen in: 3D Research 3/2018

01.09.2018 | 3DR Express

A Mamdani Fuzzy Logic System to Enhance Solar Cell Micro-Cracks Image Processing

verfasst von: Rashmi Chawla, Poonam Singal, Amit Kumar Garg

Erschienen in: 3D Research | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micro-cracks in solar Photo-Voltaic Cells (PVCs) can be formed in the vicinity of PVC/wafer manufacturing process or by thermal stress produced in transportation/handling or by inclement weather condition. Its insight is must as it reduces the efficiency of PVCs, enfeeble the cell constitution as well as affect the net manufactured production yield resulting in increase in production cost. The detection of these micro-cracks is strenuous owing to wafer’s heterogeneous textured base and involves two steps; first visualization of micro-cracks to imaging device, second efficient image processing technique to extract these micro-cracks from the captured image. In this paper Mamdani Fuzzy logic is proposed for extracting micro-cracks from solar PVCs images and comparison of performance analysis is done using MATLAB. The results show that using the proposed strategy, micro cracks visibility is much more prominent than its counterparts present in literature. To access local and remote output current data of solar panel the Internet of Things accreditation is done using Arduino and WiFi module.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Powell, D. M., Fu, R., Horowitz, K., Basore, P. A., Woodhouse, M., & Buonassisi, T. (2015). The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation. Energy & Environmental Science, 8, 395–408.CrossRef Powell, D. M., Fu, R., Horowitz, K., Basore, P. A., Woodhouse, M., & Buonassisi, T. (2015). The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation. Energy & Environmental Science, 8, 395–408.CrossRef
2.
Zurück zum Zitat Rajput, P., Tiwari, G. N., Sastry, O. S., Bora, B., & Sharma, V. (2016). Degradation of monocrystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy, 135, 786–795.CrossRef Rajput, P., Tiwari, G. N., Sastry, O. S., Bora, B., & Sharma, V. (2016). Degradation of monocrystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy, 135, 786–795.CrossRef
3.
Zurück zum Zitat Dhimish, M., Holmes, V., & Dales, M. (2016). Grid-connected PV virtual instrument system (GCPV-VIS) for detecting photovoltaic failure. In IEEE international symposium on environment friendly energies and applications (EFEA) (pp. 1–6). Dhimish, M., Holmes, V., & Dales, M. (2016). Grid-connected PV virtual instrument system (GCPV-VIS) for detecting photovoltaic failure. In IEEE international symposium on environment friendly energies and applications (EFEA) (pp. 1–6).
4.
Zurück zum Zitat Sharma, V., & Chandel, S. S. (2013). Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 27, 753–767.CrossRef Sharma, V., & Chandel, S. S. (2013). Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 27, 753–767.CrossRef
5.
Zurück zum Zitat Kontgers, M., Kunze, I., Kajari-Schroder, S., Breitenmoser, X., & Bjørneklett, B. (2010). Quantifying the risk of power loss in PV modules due to micro cracks. In 25th European photovoltaic solar energy conference (pp. 3745–3752). Kontgers, M., Kunze, I., Kajari-Schroder, S., Breitenmoser, X., & Bjørneklett, B. (2010). Quantifying the risk of power loss in PV modules due to micro cracks. In 25th European photovoltaic solar energy conference (pp. 3745–3752).
6.
Zurück zum Zitat Morlier, A., Haase, F., & Kontges, M. (2015). Impact of cracks in multicrystalline silicon solar cells on PV module power—A simulation study based on field data. IEEE Journal of Photovoltaics, 5(6), 1735–1741.CrossRef Morlier, A., Haase, F., & Kontges, M. (2015). Impact of cracks in multicrystalline silicon solar cells on PV module power—A simulation study based on field data. IEEE Journal of Photovoltaics, 5(6), 1735–1741.CrossRef
7.
Zurück zum Zitat Paggi, M., Corrado, M., & Rodriguez, M. A. (2013). A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Composite Structures, 95, 630–638.CrossRef Paggi, M., Corrado, M., & Rodriguez, M. A. (2013). A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Composite Structures, 95, 630–638.CrossRef
8.
Zurück zum Zitat Köntges, M., Kajari-Schröder, S., Kunze, I., & Jahn, U. (2011). Crack statistic of crystalline silicon photovoltaic modules. In 26th European photovoltaic solar energy conference and exhibition (pp. 3290–3294). Köntges, M., Kajari-Schröder, S., Kunze, I., & Jahn, U. (2011). Crack statistic of crystalline silicon photovoltaic modules. In 26th European photovoltaic solar energy conference and exhibition (pp. 3290–3294).
9.
Zurück zum Zitat Rupnowski, P., & Sopori, B. (2009). Strength of silicon wafers: Fracture mechanics approach. International Journal of Fracture, 155(1), 67–74.CrossRef Rupnowski, P., & Sopori, B. (2009). Strength of silicon wafers: Fracture mechanics approach. International Journal of Fracture, 155(1), 67–74.CrossRef
10.
Zurück zum Zitat Chiou, Y. C., Liu, J. Z., & Liang, Y. T. (2011). Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques. Sensor Review, 31(2), 154–165.CrossRef Chiou, Y. C., Liu, J. Z., & Liang, Y. T. (2011). Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques. Sensor Review, 31(2), 154–165.CrossRef
11.
Zurück zum Zitat Kajari-Schroder, S., Kunze, I., Eitner, U., & Köntges, M. (2011). Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Solar Energy Materials and Solar Cells, 95(11), 3054–3059.CrossRef Kajari-Schroder, S., Kunze, I., Eitner, U., & Köntges, M. (2011). Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests. Solar Energy Materials and Solar Cells, 95(11), 3054–3059.CrossRef
12.
Zurück zum Zitat Wieghold, S., Morishige, A. E., Meyer, L., Buonassisi, T., & Sachs, E. M. (2017). Crack detection in crystalline silicon solar cells using dark- field imaging. In Proceedings of 7th international conference on silicon photovoltaics, silicon PV2017, Elseveir Energy Procedia (Vol. 124, pp. 526–531).CrossRef Wieghold, S., Morishige, A. E., Meyer, L., Buonassisi, T., & Sachs, E. M. (2017). Crack detection in crystalline silicon solar cells using dark- field imaging. In Proceedings of 7th international conference on silicon photovoltaics, silicon PV2017, Elseveir Energy Procedia (Vol. 124, pp. 526–531).CrossRef
14.
Zurück zum Zitat Breitenstein, O., Bauer, J., Altermatt, P. P., & Ramspeck, K. (2010). Influence of defects on solar cell characteristics. Solid State Phenomena, 156, 1–10. Breitenstein, O., Bauer, J., Altermatt, P. P., & Ramspeck, K. (2010). Influence of defects on solar cell characteristics. Solid State Phenomena, 156, 1–10.
15.
Zurück zum Zitat Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., & Podlowski, L. (2005). Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of PV modules. In Presented at the 20th European PV solar energy conference, Barcelona, Spain, June 6–10, 2005. Grunow, P., Clemens, P., Hoffmann, V., Litzenburger, B., & Podlowski, L. (2005). Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of PV modules. In Presented at the 20th European PV solar energy conference, Barcelona, Spain, June 6–10, 2005.
16.
Zurück zum Zitat Köntges, M., Kajari-Schröder, S., Kunze, I., & Jahn, U. (2011). The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Solar Energy Materials and Solar Cells, 95, 1131–1137.CrossRef Köntges, M., Kajari-Schröder, S., Kunze, I., & Jahn, U. (2011). The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Solar Energy Materials and Solar Cells, 95, 1131–1137.CrossRef
17.
Zurück zum Zitat Kropp, T., et al. (2018). Quantitative prediction of power loss for damaged photovoltaic modules using electroluminescence. Energies, 11(5), 1172.CrossRef Kropp, T., et al. (2018). Quantitative prediction of power loss for damaged photovoltaic modules using electroluminescence. Energies, 11(5), 1172.CrossRef
18.
Zurück zum Zitat Abdelhamid, M., Singh, R., & Omar, M. (2013). Review of microcrack detection techniques for solar cells. IEEE Journal of Photovoltaics, 4, 2156–3381. Abdelhamid, M., Singh, R., & Omar, M. (2013). Review of microcrack detection techniques for solar cells. IEEE Journal of Photovoltaics, 4, 2156–3381.
19.
Zurück zum Zitat Bauer, J., Frühauf, F., & Breitenstein, O. (2017). Quantitative local current-voltage analysis and calculation of performance parameters of single solar cells in modules. Solar Energy Materials and Solar Cells, 159, 8–19.CrossRef Bauer, J., Frühauf, F., & Breitenstein, O. (2017). Quantitative local current-voltage analysis and calculation of performance parameters of single solar cells in modules. Solar Energy Materials and Solar Cells, 159, 8–19.CrossRef
20.
Zurück zum Zitat Dhimish, M., et al. (2017). The impact of cracks on photovoltaic power performance. Journal of Science: Advanced Materials and Devices, 2(2), 199–209. Dhimish, M., et al. (2017). The impact of cracks on photovoltaic power performance. Journal of Science: Advanced Materials and Devices, 2(2), 199–209.
21.
Zurück zum Zitat Mallor, F., León, T., De Boeck, L., Van Gulck, S., Meulders, M., & Van der Meerssche, B. (2017). A method for detecting malfunctions in PV solar panels based on electricity production monitoring. Solar Energy, 153, 51–63.CrossRef Mallor, F., León, T., De Boeck, L., Van Gulck, S., Meulders, M., & Van der Meerssche, B. (2017). A method for detecting malfunctions in PV solar panels based on electricity production monitoring. Solar Energy, 153, 51–63.CrossRef
22.
Zurück zum Zitat Tsai, D. M., Chang, C. C., & Chao, S. M. (2010). Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion. Image and Vision Computing, 28(3), 491–501.CrossRef Tsai, D. M., Chang, C. C., & Chao, S. M. (2010). Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion. Image and Vision Computing, 28(3), 491–501.CrossRef
23.
Zurück zum Zitat Stankovic, J. A. (2014). Research directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3–9.MathSciNetCrossRef Stankovic, J. A. (2014). Research directions for the Internet of Things. IEEE Internet of Things Journal, 1(1), 3–9.MathSciNetCrossRef
24.
Zurück zum Zitat Zanella, A. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.CrossRef Zanella, A. (2014). Internet of Things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.CrossRef
25.
Zurück zum Zitat Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through Internet of Things. IEEE Internet of Things Journal, 1(2), 112–121.CrossRef Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through Internet of Things. IEEE Internet of Things Journal, 1(2), 112–121.CrossRef
26.
Zurück zum Zitat Kishore, P., et al. (2017). Internet of Things based low-cost real-time home automation and smart security system. International Journal of Advanced Research in Computer and Communication Engineering, 6, 505–509.CrossRef Kishore, P., et al. (2017). Internet of Things based low-cost real-time home automation and smart security system. International Journal of Advanced Research in Computer and Communication Engineering, 6, 505–509.CrossRef
27.
Zurück zum Zitat Bin, L., Xianghao, H., & Shuai, F. (2011). Automatic inspection of surface crack in solar cell images. In Proceedings of control and decision conference, 2011 Chinese (pp. 993–998). Bin, L., Xianghao, H., & Shuai, F. (2011). Automatic inspection of surface crack in solar cell images. In Proceedings of control and decision conference, 2011 Chinese (pp. 993–998).
28.
Zurück zum Zitat Ko, S. S., Liu, C. S., & Lin, Y. C. (2013). Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers. Elsevier Optik, 124, 4030–4035.CrossRef Ko, S. S., Liu, C. S., & Lin, Y. C. (2013). Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers. Elsevier Optik, 124, 4030–4035.CrossRef
29.
Zurück zum Zitat Rueland, E., Herguth, A., Trummer, A., Wansleben, S., & Fath, P. (2005). Micro- crack detection an other optical characterization techniques for in-line inspection of wafers and cells. In Proceedings of 20th European photovoltaic solar energy conference, Barcelona, Spain, 2005. Rueland, E., Herguth, A., Trummer, A., Wansleben, S., & Fath, P. (2005). Micro- crack detection an other optical characterization techniques for in-line inspection of wafers and cells. In Proceedings of 20th European photovoltaic solar energy conference, Barcelona, Spain, 2005.
30.
Zurück zum Zitat Zhuang, F., Yanzheng, Z., Yang, L., Qixin, C., Mingbo, C., Jun, Z., & Lee, J. (2004). Solar cell crack inspection by image processing. In Proceedings of international conference on business of electronic product reliability and liability. Zhuang, F., Yanzheng, Z., Yang, L., Qixin, C., Mingbo, C., Jun, Z., & Lee, J. (2004). Solar cell crack inspection by image processing. In Proceedings of international conference on business of electronic product reliability and liability.
31.
Zurück zum Zitat Yang, W. (2009). Short-time discrete wavelet transform for wafer microcrack detection. In Proceedings of IEEE international symposium on industrial electronics, Seoul, Korea, 2009. Yang, W. (2009). Short-time discrete wavelet transform for wafer microcrack detection. In Proceedings of IEEE international symposium on industrial electronics, Seoul, Korea, 2009.
32.
Zurück zum Zitat Rakotoniaina, J. P., Breitenstein, O., Al Rifai, M. H., Franke, D., & Schnieder, A. (2004). Detection of cracks in silicon wafers and solar cells by lock-in ultrasound thermography. In Proceedings of PV solar conference, Paris, France, 2004. Rakotoniaina, J. P., Breitenstein, O., Al Rifai, M. H., Franke, D., & Schnieder, A. (2004). Detection of cracks in silicon wafers and solar cells by lock-in ultrasound thermography. In Proceedings of PV solar conference, Paris, France, 2004.
33.
Zurück zum Zitat Belyaev, A., Polupan, O., Ostapenko, S., Hess, D. P., & Kalejs, J. P. (2006). Res-onance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers. Semiconductor Science and Technology, 21, 254–260.CrossRef Belyaev, A., Polupan, O., Ostapenko, S., Hess, D. P., & Kalejs, J. P. (2006). Res-onance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers. Semiconductor Science and Technology, 21, 254–260.CrossRef
34.
Zurück zum Zitat Fuyuki, T., Kondo, H., Yamazaki, T., Takahashi, Y., & Uraoka, Y. (2005). Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 86, 262108–262110.CrossRef Fuyuki, T., Kondo, H., Yamazaki, T., Takahashi, Y., & Uraoka, Y. (2005). Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 86, 262108–262110.CrossRef
35.
Zurück zum Zitat Trupke, T., Bardos, R. A., Schubert, M. C., & Warta, W. (2006). Photoluminescence imaging of silicon wafers. Applied Physics Letters, 89(4), 044107.CrossRef Trupke, T., Bardos, R. A., Schubert, M. C., & Warta, W. (2006). Photoluminescence imaging of silicon wafers. Applied Physics Letters, 89(4), 044107.CrossRef
36.
Zurück zum Zitat Tsai, D. M., Wu, S. C., & Chiu, W. Y. (2012). Defect detection in solar cells using fourier image reconstruction. Elsevier Solar Energy Materials and Solar Cells, 99, 250–262.CrossRef Tsai, D. M., Wu, S. C., & Chiu, W. Y. (2012). Defect detection in solar cells using fourier image reconstruction. Elsevier Solar Energy Materials and Solar Cells, 99, 250–262.CrossRef
37.
Zurück zum Zitat Desai, A., Injmulwar, P., Karadkhedkar, S., Gaikwad, V., & Chopde, A. (2016). Detection of microcracks in solar cell images. In Proceedings of national conference on ACCET, Pune, India, 2016. Desai, A., Injmulwar, P., Karadkhedkar, S., Gaikwad, V., & Chopde, A. (2016). Detection of microcracks in solar cell images. In Proceedings of national conference on ACCET, Pune, India, 2016.
38.
Zurück zum Zitat Tsai, D. M., Wu, S. C., & Chiu, W. Y. (2013). Defect detection in solar modules using ICA basis images. IEEE Transactions on Industrial Informatics, 9, 1551–3203. Tsai, D. M., Wu, S. C., & Chiu, W. Y. (2013). Defect detection in solar modules using ICA basis images. IEEE Transactions on Industrial Informatics, 9, 1551–3203.
Metadaten
Titel
A Mamdani Fuzzy Logic System to Enhance Solar Cell Micro-Cracks Image Processing
verfasst von
Rashmi Chawla
Poonam Singal
Amit Kumar Garg
Publikationsdatum
01.09.2018
Verlag
3D Display Research Center
Erschienen in
3D Research / Ausgabe 3/2018
Elektronische ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-018-0186-7

Weitere Artikel der Ausgabe 3/2018

3D Research 3/2018 Zur Ausgabe