Skip to main content
Erschienen in: Archive of Applied Mechanics 10/2021

19.06.2021 | Original

A mechanical method of tensile strength prediction for liquids with the application of a new model for void nucleation

verfasst von: Fuqi Zhao, Hongqiang Zhou, Fengguo Zhang, Anmin He, Pei Wang

Erschienen in: Archive of Applied Mechanics | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new model for void nucleation, employed in the mechanical method of tensile strength prediction for liquids, is presented in this paper based on classical nucleation theory and energy conservation analysis. The dependence of surface tension on void radius, which is presented in the method of Tolman’s correction, could influence the total energy for void nucleation, including the surface energy and the work of external tensile load. NAG (nucleation and growth) scheme is used in the present mechanical model to study the tensile process of the Al melt. The calculation results of material strength and void evolution of the melt under a high strain rate by using present mechanical method are studied and compared with those by MD (molecular dynamics) simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bull, T.H.: The tensile strengths of viscous liquids under dynamic loading. Br. J. Appl. Phys. 7(11), 416 (1956)CrossRef Bull, T.H.: The tensile strengths of viscous liquids under dynamic loading. Br. J. Appl. Phys. 7(11), 416 (1956)CrossRef
2.
Zurück zum Zitat Erlich, D.C., Wooten, D.C., Crewdson, R.C.: Dynamic tensile failure of glycerol. J. Appl. Phys. 42(13), 5495–5502 (1971)CrossRef Erlich, D.C., Wooten, D.C., Crewdson, R.C.: Dynamic tensile failure of glycerol. J. Appl. Phys. 42(13), 5495–5502 (1971)CrossRef
3.
Zurück zum Zitat Huneault, J., Higgins, A.J.: Shock wave induced cavitation of silicon oils. J. Appl. Phys. 125, 245903 (2019)CrossRef Huneault, J., Higgins, A.J.: Shock wave induced cavitation of silicon oils. J. Appl. Phys. 125, 245903 (2019)CrossRef
4.
Zurück zum Zitat Cai, Y., Wu, H.A., Luo, S.N.: Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids. J. Chem. Phys. 140, 214317 (2014)CrossRef Cai, Y., Wu, H.A., Luo, S.N.: Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids. J. Chem. Phys. 140, 214317 (2014)CrossRef
5.
Zurück zum Zitat Agranat, M.B., Anisimov, S.I., et al.: Strength properties of an aluminum melt at extremely high-tension rates under the action of femtosecond laser pulses. JETP Lett. 91, 571 (2010)CrossRef Agranat, M.B., Anisimov, S.I., et al.: Strength properties of an aluminum melt at extremely high-tension rates under the action of femtosecond laser pulses. JETP Lett. 91, 571 (2010)CrossRef
6.
Zurück zum Zitat de Resseguier, T., Signor, L., et al.: Experimental investigation of liquid spall in laser shock-loaded tin. J. Appl. Phys. 101, 013506 (2007)CrossRef de Resseguier, T., Signor, L., et al.: Experimental investigation of liquid spall in laser shock-loaded tin. J. Appl. Phys. 101, 013506 (2007)CrossRef
7.
Zurück zum Zitat Kanel, G.I., Savinykh, A.S., et al.: Dynamic strength of tin and lead melts. JETP Lett. 102, 548–551 (2015)CrossRef Kanel, G.I., Savinykh, A.S., et al.: Dynamic strength of tin and lead melts. JETP Lett. 102, 548–551 (2015)CrossRef
8.
Zurück zum Zitat Bogach, A.A., Utkin, A.V.: Strength of water under pulsed loading. J. Appl. Mech. Tech. Phys. 41, 752 (2000)CrossRef Bogach, A.A., Utkin, A.V.: Strength of water under pulsed loading. J. Appl. Mech. Tech. Phys. 41, 752 (2000)CrossRef
9.
Zurück zum Zitat Carlson, G.A., Levine, H.S.: Dynamic tensile strength of glycerol. J. Appl. Phys. 46, 1594 (1975)CrossRef Carlson, G.A., Levine, H.S.: Dynamic tensile strength of glycerol. J. Appl. Phys. 46, 1594 (1975)CrossRef
10.
Zurück zum Zitat Carlson, G.A.: Dynamic tensile strength of mercury. J. Appl. Phys. 46, 4069 (1975)CrossRef Carlson, G.A.: Dynamic tensile strength of mercury. J. Appl. Phys. 46, 4069 (1975)CrossRef
11.
Zurück zum Zitat Ashitkov, S.I., Komarov, P.S., et al.: Strength of liquid tin at extremely high strain rates under a femtosecond laser action. JETP Lett. 103(8), 544–548 (2016)CrossRef Ashitkov, S.I., Komarov, P.S., et al.: Strength of liquid tin at extremely high strain rates under a femtosecond laser action. JETP Lett. 103(8), 544–548 (2016)CrossRef
12.
Zurück zum Zitat Mayer, A.E., Mayer, P.N.: Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals. J. Appl. Phys. 118(3), 235414–235477 (2015)CrossRef Mayer, A.E., Mayer, P.N.: Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals. J. Appl. Phys. 118(3), 235414–235477 (2015)CrossRef
13.
Zurück zum Zitat Mayer P., Mayer A. Evolution of Size Distribution of Pores in Metal Melts at Tension with High Strain Rates. In: Gdoutos E. (eds) Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2018. Structural Integrity, vol 5. Springer, Cham. (2019) Mayer P., Mayer A. Evolution of Size Distribution of Pores in Metal Melts at Tension with High Strain Rates. In: Gdoutos E. (eds) Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2018. Structural Integrity, vol 5. Springer, Cham. (2019)
14.
Zurück zum Zitat Cai, Y., Wang, L., et al.: Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Phys. Rev. B 92, 014108 (2015)CrossRef Cai, Y., Wang, L., et al.: Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Phys. Rev. B 92, 014108 (2015)CrossRef
15.
Zurück zum Zitat Cai, Y., Huang, J., Wu, H.A., et al.: Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. J. Phys. Chem. Lett. 7, 806 (2016)CrossRef Cai, Y., Huang, J., Wu, H.A., et al.: Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. J. Phys. Chem. Lett. 7, 806 (2016)CrossRef
16.
Zurück zum Zitat Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse for ductile porous materials. J. Appl. Phys. 43, 1627–1636 (1972)CrossRef Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse for ductile porous materials. J. Appl. Phys. 43, 1627–1636 (1972)CrossRef
17.
Zurück zum Zitat Seaman, L., Curran, D.R.: Inertia and temperature effects in void growth. AIP Conf. Proc. 620, 607(2002) Seaman, L., Curran, D.R.: Inertia and temperature effects in void growth. AIP Conf. Proc. 620, 607(2002)
18.
Zurück zum Zitat Curran, D.R., Seaman, L., Shockey, D.A.: Dynamic failure of solids. Phys. Rep. 147(5–6), 253–388 (1987)CrossRef Curran, D.R., Seaman, L., Shockey, D.A.: Dynamic failure of solids. Phys. Rep. 147(5–6), 253–388 (1987)CrossRef
19.
Zurück zum Zitat Molinari, A., Wright, T.W.: A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. J. Mech. Phys. Solids 53(7), 1476–1504 (2005)MATHCrossRef Molinari, A., Wright, T.W.: A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. J. Mech. Phys. Solids 53(7), 1476–1504 (2005)MATHCrossRef
20.
Zurück zum Zitat Czarnota, C., Jacques, N., et al.: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J. Mech. Phys. Solids 56(4), 1624–1650 (2008)CrossRef Czarnota, C., Jacques, N., et al.: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J. Mech. Phys. Solids 56(4), 1624–1650 (2008)CrossRef
21.
Zurück zum Zitat Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs. Dover, New York (1961) Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs. Dover, New York (1961)
22.
Zurück zum Zitat Turnbull, D., Fisher, J.C.: Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71 (1949)CrossRef Turnbull, D., Fisher, J.C.: Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71 (1949)CrossRef
23.
Zurück zum Zitat Christian, J.W.: The Theory of Transformation in Metals and Alloys. Pergaman, New York (1965) Christian, J.W.: The Theory of Transformation in Metals and Alloys. Pergaman, New York (1965)
24.
Zurück zum Zitat Zeldovich, Y.B.: On the theory of new phase formation: cavitation. In: Ostriker, J.P., Barenblatt, G.I., Sunyaev, R.A. (eds.) Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynanics, pp. 120–137. Princeton University Press, Princeton (1992)CrossRef Zeldovich, Y.B.: On the theory of new phase formation: cavitation. In: Ostriker, J.P., Barenblatt, G.I., Sunyaev, R.A. (eds.) Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynanics, pp. 120–137. Princeton University Press, Princeton (1992)CrossRef
25.
Zurück zum Zitat Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333–337 (1949)CrossRef Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333–337 (1949)CrossRef
26.
Zurück zum Zitat Vitos, L., Ruban, A.V., Skriver, H.L., Kollár, J.: The surface energy of metals. Surf. Sci. 411, 186–202 (1998)CrossRef Vitos, L., Ruban, A.V., Skriver, H.L., Kollár, J.: The surface energy of metals. Surf. Sci. 411, 186–202 (1998)CrossRef
27.
Zurück zum Zitat Zhao, F.Q., Ma, X.B., Pan, H., Liu, J.X.: Modeling of dynamic elasto-plastic growth of a nano-void with surface energy, inertia and thermal softening effects. AIP Adv. 9(10), 105313 (2019)CrossRef Zhao, F.Q., Ma, X.B., Pan, H., Liu, J.X.: Modeling of dynamic elasto-plastic growth of a nano-void with surface energy, inertia and thermal softening effects. AIP Adv. 9(10), 105313 (2019)CrossRef
28.
Zurück zum Zitat Carroll, M.M., Kim, K.T., Nesterenko, V.F.: The effect of temperature on viscoplastic pore collapse. J. Appl. Phys. 59(6), 1962–1962 (1986)CrossRef Carroll, M.M., Kim, K.T., Nesterenko, V.F.: The effect of temperature on viscoplastic pore collapse. J. Appl. Phys. 59(6), 1962–1962 (1986)CrossRef
29.
Zurück zum Zitat Zhao, F.Q., Pan, H., Zhang, F.G., Liu, J.X.: A viscoplastic model for void growth under dynamic loading conditions. AIP Adv. 9(12), 125119 (2019)CrossRef Zhao, F.Q., Pan, H., Zhang, F.G., Liu, J.X.: A viscoplastic model for void growth under dynamic loading conditions. AIP Adv. 9(12), 125119 (2019)CrossRef
30.
Zurück zum Zitat Yu, Qiao, Ling, et al. Pressurized Liquid in Nanopores: A Modified Laplace-Young Equation[J]. Nano Letters, 9(3):984–988 (2009) Yu, Qiao, Ling, et al. Pressurized Liquid in Nanopores: A Modified Laplace-Young Equation[J]. Nano Letters, 9(3):984–988 (2009)
31.
Zurück zum Zitat Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 65–87 (1805)CrossRef Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 65–87 (1805)CrossRef
32.
Zurück zum Zitat Gutzow I.S., Schmelzer J.W.P. Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems. In: The Vitreous State. Springer, Berlin, Heidelberg. (2013) Gutzow I.S., Schmelzer J.W.P. Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems. In: The Vitreous State. Springer, Berlin, Heidelberg. (2013)
33.
Zurück zum Zitat Schmelzer, J.W.P., Gutzow, I., et al.: Curvature-dependent surface tension and nucleation theory. J. Colloid Interface Sci. 178(2), 657–665 (1996)CrossRef Schmelzer, J.W.P., Gutzow, I., et al.: Curvature-dependent surface tension and nucleation theory. J. Colloid Interface Sci. 178(2), 657–665 (1996)CrossRef
34.
Zurück zum Zitat Lu, H.M., Jiang, Q.: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109(32), 15463 (2005)CrossRef Lu, H.M., Jiang, Q.: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109(32), 15463 (2005)CrossRef
35.
36.
Zurück zum Zitat Asim, U.B., Siddiq, M.A., Demiral, M.: Void growth in high strength aluminium alloy single crystals—a CPFEM based study. Model. Simul. Mater. Sci. Eng. 25(3), 035010 (2017)CrossRef Asim, U.B., Siddiq, M.A., Demiral, M.: Void growth in high strength aluminium alloy single crystals—a CPFEM based study. Model. Simul. Mater. Sci. Eng. 25(3), 035010 (2017)CrossRef
37.
Zurück zum Zitat Asim, U.B., Siddiq, M.A., Kartal, M.E.: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys. Comput. Mater. Sci. 161, 346 (2019)CrossRef Asim, U.B., Siddiq, M.A., Kartal, M.E.: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys. Comput. Mater. Sci. 161, 346 (2019)CrossRef
38.
Zurück zum Zitat Asim, U.B., Siddiq, M.A., Kartal, M.E.: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti–10V–2Fe–3Al). Int. J. Plast. 122, 188–211 (2019)CrossRef Asim, U.B., Siddiq, M.A., Kartal, M.E.: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti–10V–2Fe–3Al). Int. J. Plast. 122, 188–211 (2019)CrossRef
39.
Zurück zum Zitat Siddiq, M.A.: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals. Int. J. Damage Mech. 28(2), 233 (2018)MathSciNetCrossRef Siddiq, M.A.: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals. Int. J. Damage Mech. 28(2), 233 (2018)MathSciNetCrossRef
40.
Zurück zum Zitat Siddiq, M.A., Arciniega, R., Sayed, T.E.: A variational void coalescence model for ductile metals. Comput. Mech. 49(2), 185–195 (2012)MathSciNetMATHCrossRef Siddiq, M.A., Arciniega, R., Sayed, T.E.: A variational void coalescence model for ductile metals. Comput. Mech. 49(2), 185–195 (2012)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Franc, J.P.: The Rayleigh–Plesset equation: a simple and powerful tool to understand various aspects of cavitation. In: d’Agostino, L., Salvetti, M.V. (eds.) Fluid Dynamics of Cavitation and Cavitating Turbopumps, vol. 496. CISM International Centre for Mechanical Sciences, Udine (2007)CrossRef Franc, J.P.: The Rayleigh–Plesset equation: a simple and powerful tool to understand various aspects of cavitation. In: d’Agostino, L., Salvetti, M.V. (eds.) Fluid Dynamics of Cavitation and Cavitating Turbopumps, vol. 496. CISM International Centre for Mechanical Sciences, Udine (2007)CrossRef
42.
Zurück zum Zitat Johnson, J.N.: Dynamic fracture and spallation in ductile solids. J. Appl. Phys. 52(4), 2812–2825 (1981)CrossRef Johnson, J.N.: Dynamic fracture and spallation in ductile solids. J. Appl. Phys. 52(4), 2812–2825 (1981)CrossRef
43.
Zurück zum Zitat Grady, D.E.: The spall strength of condensed matter. J. Mech. Phys. Solids 36(3), 353–384 (1988)CrossRef Grady, D.E.: The spall strength of condensed matter. J. Mech. Phys. Solids 36(3), 353–384 (1988)CrossRef
44.
Zurück zum Zitat Wu, X.Y., Ramesh, K.T., Wright, T.W.: The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids 51(1), 1–26 (2003)MATHCrossRef Wu, X.Y., Ramesh, K.T., Wright, T.W.: The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids 51(1), 1–26 (2003)MATHCrossRef
45.
Zurück zum Zitat Ashitkov, S.I., Inogamov, N.A., et al.: Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating. AIP Conf. Proc. 1464, 120 (2012)CrossRef Ashitkov, S.I., Inogamov, N.A., et al.: Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating. AIP Conf. Proc. 1464, 120 (2012)CrossRef
Metadaten
Titel
A mechanical method of tensile strength prediction for liquids with the application of a new model for void nucleation
verfasst von
Fuqi Zhao
Hongqiang Zhou
Fengguo Zhang
Anmin He
Pei Wang
Publikationsdatum
19.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 10/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02000-5

Weitere Artikel der Ausgabe 10/2021

Archive of Applied Mechanics 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.