Skip to main content
Erschienen in: Cognitive Computation 2/2014

01.06.2014

A Meta-Cognitive Learning Algorithm for an Extreme Learning Machine Classifier

verfasst von: R. Savitha, S. Suresh, H. J. Kim

Erschienen in: Cognitive Computation | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an efficient fast learning classifier based on the Nelson and Narens model of human meta-cognition, namely ‘Meta-cognitive Extreme Learning Machine (McELM).’ McELM has two components: a cognitive component and a meta-cognitive component. The cognitive component of McELM is a three-layered extreme learning machine (ELM) classifier. The neurons in the hidden layer of the cognitive component employ the q-Gaussian activation function, while the neurons in the input and output layers are linear. The meta-cognitive component of McELM has a self-regulatory learning mechanism that decides what-to-learn, when-to-learn, and how-to-learn in a meta-cognitive framework. As the samples in the training set are presented one-by-one, the meta-cognitive component receives the monitory signals from the cognitive component and chooses suitable learning strategies for the sample. Thus, it either deletes the sample, uses the sample to add a new neuron, or updates the output weights based on the sample, or reserves the sample for future use. Therefore, unlike the conventional ELM, the architecture of McELM is not fixed a priori, instead, the network is built during the training process. While adding a neuron, McELM chooses the centers based on the sample, and the width of the Gaussian function is chosen randomly. The output weights are estimated using the least square estimate based on the hinge-loss error function. The hinge-loss error function facilitates prediction of posterior probabilities better than the mean-square error and is hence preferred to develop the McELM classifier. While updating the network parameters, the output weights are updated using a recursive least square estimate. The performance of McELM is evaluated on a set of benchmark classification problems from the UCI machine learning repository. Performance study results highlight that meta-cognition in ELM framework enhances the decision-making ability of ELM significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Platt JC. A resource allocation network for function interpolation. Neural Comput. 1997;2(2):213–25. Platt JC. A resource allocation network for function interpolation. Neural Comput. 1997;2(2):213–25.
2.
Zurück zum Zitat Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997;9(2):461–78.CrossRef Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997;9(2):461–78.CrossRef
3.
Zurück zum Zitat Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans Neural Netw. 1998;9(2):308–18.CrossRef Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans Neural Netw. 1998;9(2):308–18.CrossRef
4.
Zurück zum Zitat Huang GB, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern Part B Cybern. 2004;34(6):2284–92.CrossRef Huang GB, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern Part B Cybern. 2004;34(6):2284–92.CrossRef
5.
Zurück zum Zitat Suresh S, Sundararajan N, Saratchandran P. A sequential multi-category classifier using radial basis function networks. Neurocomputing. 2008;71(7–9): 1345–58.CrossRef Suresh S, Sundararajan N, Saratchandran P. A sequential multi-category classifier using radial basis function networks. Neurocomputing. 2008;71(7–9): 1345–58.CrossRef
6.
Zurück zum Zitat Suresh S, Dong K, Kim HJ. A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing. 2010;73(16–18):3012–9.CrossRef Suresh S, Dong K, Kim HJ. A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing. 2010;73(16–18):3012–9.CrossRef
7.
Zurück zum Zitat Babu GS, Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing. 2012;81:86–96.CrossRef Babu GS, Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing. 2012;81:86–96.CrossRef
8.
Zurück zum Zitat Huang GB, Siew CK. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24. Huang GB, Siew CK. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24.
9.
Zurück zum Zitat Huang G.-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern. 2012;42(2):513–29.CrossRef Huang G.-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern. 2012;42(2):513–29.CrossRef
10.
Zurück zum Zitat Liang N-Y, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.PubMedCrossRef Liang N-Y, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.PubMedCrossRef
11.
Zurück zum Zitat Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern Part B Cybern. 2009;39(4):1067–72.CrossRef Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern Part B Cybern. 2009;39(4):1067–72.CrossRef
12.
Zurück zum Zitat Zhao J, Wang Z, Park DS. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing. 2012;87:79–89.CrossRef Zhao J, Wang Z, Park DS. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing. 2012;87:79–89.CrossRef
13.
Zurück zum Zitat Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.PubMedCrossRef Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.PubMedCrossRef
14.
Zurück zum Zitat Huang G.-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–22.CrossRef Huang G.-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2(2):107–22.CrossRef
15.
Zurück zum Zitat Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in p2p networks. Neurocomputing. 2011;74(16):2438–43.CrossRef Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in p2p networks. Neurocomputing. 2011;74(16):2438–43.CrossRef
16.
Zurück zum Zitat Cheng C, Tay WP, Huang GB. Extreme learning machines for intrusion detection. International Joint Conference on Neural Networks 2012 (IJCNN 2012) (Art no. 6252449) 2012. Cheng C, Tay WP, Huang GB. Extreme learning machines for intrusion detection. International Joint Conference on Neural Networks 2012 (IJCNN 2012) (Art no. 6252449) 2012.
17.
Zurück zum Zitat Suresh S, Babu RV, Kim HJ. No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput. 2009;9(2):541–52.CrossRef Suresh S, Babu RV, Kim HJ. No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput. 2009;9(2):541–52.CrossRef
18.
Zurück zum Zitat Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.CrossRef Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.CrossRef
19.
Zurück zum Zitat Babu RV, Suresh S, Makur A. Online adaptive radial basis function networks for robust object tracking. Comput Vis Image Underst. 2010;114(3):297–10.CrossRef Babu RV, Suresh S, Makur A. Online adaptive radial basis function networks for robust object tracking. Comput Vis Image Underst. 2010;114(3):297–10.CrossRef
20.
Zurück zum Zitat Wang G, Zhao Y, Wang DD. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72(1–3):262–8.CrossRef Wang G, Zhao Y, Wang DD. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72(1–3):262–8.CrossRef
21.
Zurück zum Zitat Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):149–57.CrossRef Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):149–57.CrossRef
22.
Zurück zum Zitat Saraswathi S, Sundaram S, Sundararajan N, Zimmermann M, Nilsen-Hamilton M. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(2):452–63.PubMedCrossRef Saraswathi S, Sundaram S, Sundararajan N, Zimmermann M, Nilsen-Hamilton M. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(2):452–63.PubMedCrossRef
23.
Zurück zum Zitat Isaacson R, Fujita F. Metacognitive knowledge monitoring and self-regulated learning: academic success and reflections on learning. J Scholarsh Teach Learn. 2006;6(1):39–55. Isaacson R, Fujita F. Metacognitive knowledge monitoring and self-regulated learning: academic success and reflections on learning. J Scholarsh Teach Learn. 2006;6(1):39–55.
24.
Zurück zum Zitat Cambria E, Olsher D, Kwok, K. Sentic activation: A two-level affective common sense reasoning framework. In: Proceedings of association for the advancement of artificial intelligence conference, Toronto; 2012. p. 186–92. Cambria E, Olsher D, Kwok, K. Sentic activation: A two-level affective common sense reasoning framework. In: Proceedings of association for the advancement of artificial intelligence conference, Toronto; 2012. p. 186–92.
25.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N. Meta-cognitive learning in fully complex-valued radial basis function network. Neural Comput. 2012;24(5):1297–28.PubMedCrossRef Savitha R, Suresh S, Sundararajan N. Meta-cognitive learning in fully complex-valued radial basis function network. Neural Comput. 2012;24(5):1297–28.PubMedCrossRef
26.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw. 2012;32:209–18.PubMedCrossRef Savitha R, Suresh S, Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw. 2012;32:209–18.PubMedCrossRef
27.
Zurück zum Zitat Babu GS, Suresh S. Meta-cognitive RBF network and its projection based learning algorithm for classification problems. Appl Soft Comput. 2013;13(1):654–66.CrossRef Babu GS, Suresh S. Meta-cognitive RBF network and its projection based learning algorithm for classification problems. Appl Soft Comput. 2013;13(1):654–66.CrossRef
28.
Zurück zum Zitat Babu GS, Suresh S. Sequential projection-based metacognitive learning in a radial basis function network for classification problems. IEEE Trans Neural Netw. 2012;24(2):194–206.CrossRef Babu GS, Suresh S. Sequential projection-based metacognitive learning in a radial basis function network for classification problems. IEEE Trans Neural Netw. 2012;24(2):194–206.CrossRef
29.
Zurück zum Zitat Nelson TO, Narens L. Metacognition: core readings, ch. Metamemory: a theoretical framework and new findings: Allyn and Bacon: Boston, T. O. Nelson (ed.) ed., 1980. p. 9–24. Nelson TO, Narens L. Metacognition: core readings, ch. Metamemory: a theoretical framework and new findings: Allyn and Bacon: Boston, T. O. Nelson (ed.) ed., 1980. p. 9–24.
30.
Zurück zum Zitat Fernndez-Navarro F, Hervs-Martnez C, Gutirrez PA, Pea-Barragn JM, Lpez-Granados F. Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification. Neurocomputing. 2012;75:123–34.CrossRef Fernndez-Navarro F, Hervs-Martnez C, Gutirrez PA, Pea-Barragn JM, Lpez-Granados F. Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification. Neurocomputing. 2012;75:123–34.CrossRef
31.
Zurück zum Zitat Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann Stat. 2003;32(1):56–85.CrossRef Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann Stat. 2003;32(1):56–85.CrossRef
32.
Zurück zum Zitat Suresh S, Sundararajan N, Saratchandran P. Risk-sensitive loss functions for sparse multi-category classification problems. Inf Sci. 2008;178(12):2621–38.CrossRef Suresh S, Sundararajan N, Saratchandran P. Risk-sensitive loss functions for sparse multi-category classification problems. Inf Sci. 2008;178(12):2621–38.CrossRef
34.
Zurück zum Zitat Cox MT. Metacognition in computation: a selected research review. Artif Intell. 2005;169(2):104–41.CrossRef Cox MT. Metacognition in computation: a selected research review. Artif Intell. 2005;169(2):104–41.CrossRef
35.
Zurück zum Zitat Suresh S, Savitha R, Sundararajan N. A sequential learning algorithm for complex-valued resource allocation network-CSRAN. IEEE Trans Neural Netw. 2011;22(7):1061–72.PubMedCrossRef Suresh S, Savitha R, Sundararajan N. A sequential learning algorithm for complex-valued resource allocation network-CSRAN. IEEE Trans Neural Netw. 2011;22(7):1061–72.PubMedCrossRef
36.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N. A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst. 2009;19(4):253–67.PubMedCrossRef Savitha R, Suresh S, Sundararajan N. A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst. 2009;19(4):253–67.PubMedCrossRef
37.
Zurück zum Zitat Goh SL, Mandic DP. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks. Neural Comput. 2007;19(4):1039–55.PubMedCrossRef Goh SL, Mandic DP. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks. Neural Comput. 2007;19(4):1039–55.PubMedCrossRef
38.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N. A fast learning fully complex-valued relaxation network (FCRN). In: Proceedings of the international joint conference on neural networks 2011; p. 1372–7. Savitha R, Suresh S, Sundararajan N. A fast learning fully complex-valued relaxation network (FCRN). In: Proceedings of the international joint conference on neural networks 2011; p. 1372–7.
39.
Zurück zum Zitat Subramanian K, Suresh S. A sequential learning algorithm for meta-cognitive neuro-fuzzy inference system for classification problems. In: Proceedings of the international joint conference on neural networks 2011; p. 2507–12. Subramanian K, Suresh S. A sequential learning algorithm for meta-cognitive neuro-fuzzy inference system for classification problems. In: Proceedings of the international joint conference on neural networks 2011; p. 2507–12.
40.
Zurück zum Zitat Subramanian K, Suresh S. Human action recognition using meta-cognitive neuro-fuzzy inference system. Proc Int Jt Conf Neural Netw. 2012;22(6):1250028-1–15. Subramanian K, Suresh S. Human action recognition using meta-cognitive neuro-fuzzy inference system. Proc Int Jt Conf Neural Netw. 2012;22(6):1250028-1–15.
41.
Zurück zum Zitat Subramanian K, Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput. 2012;12(11):3603–14.CrossRef Subramanian K, Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput. 2012;12(11):3603–14.CrossRef
42.
Zurück zum Zitat Shkurko K, Qi X. A radial basis function and semantic learning space based composite learning approach to image retrieval. Proc ICASSP IEEE Int Conf Acoust Speech Signal Process. 2007;1:945–8. Shkurko K, Qi X. A radial basis function and semantic learning space based composite learning approach to image retrieval. Proc ICASSP IEEE Int Conf Acoust Speech Signal Process. 2007;1:945–8.
43.
Zurück zum Zitat Zhang J, Li H. A reconstruction approach to ct with cauchy rbfs network. Advances in Neural Networks: ISNN2004, Lecture Notes in Computer Science 2004; 3174:234–6. Zhang J, Li H. A reconstruction approach to ct with cauchy rbfs network. Advances in Neural Networks: ISNN2004, Lecture Notes in Computer Science 2004; 3174:234–6.
44.
Zurück zum Zitat Saranli A, Baykal B. Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions. Neurocomputing. 1998;18(1–3):183–94.CrossRef Saranli A, Baykal B. Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions. Neurocomputing. 1998;18(1–3):183–94.CrossRef
45.
Zurück zum Zitat Udwadia FE, Phohomsiri P. Generalized LM-inverse of a matrix augmented by a column vector. Appl Math Comput. 2007;190:999–06.CrossRef Udwadia FE, Phohomsiri P. Generalized LM-inverse of a matrix augmented by a column vector. Appl Math Comput. 2007;190:999–06.CrossRef
Metadaten
Titel
A Meta-Cognitive Learning Algorithm for an Extreme Learning Machine Classifier
verfasst von
R. Savitha
S. Suresh
H. J. Kim
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2014
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9223-2

Weitere Artikel der Ausgabe 2/2014

Cognitive Computation 2/2014 Zur Ausgabe