Skip to main content
Erschienen in: Cognitive Computation 2/2014

01.06.2014

Fast Face Recognition Via Sparse Coding and Extreme Learning Machine

verfasst von: Bo He, Dongxun Xu, Rui Nian, Mark van Heeswijk, Qi Yu, Yoan Miche, Amaury Lendasse

Erschienen in: Cognitive Computation | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most face recognition approaches developed so far regard the sparse coding as one of the essential means, while the sparse coding models have been hampered by the extremely expensive computational cost in the implementation. In this paper, a novel scheme for the fast face recognition is presented via extreme learning machine (ELM) and sparse coding. The common feature hypothesis is first introduced to extract the basis function from the local universal images, and then the single hidden layer feedforward network (SLFN) is established to simulate the sparse coding process for the face images by ELM algorithm. Some developments have been done to maintain the efficient inherent information embedding in the ELM learning. The resulting local sparse coding coefficient will then be grouped into the global representation and further fed into the ELM ensemble which is composed of a number of SLFNs for face recognition. The simulation results have shown the good performance in the proposed approach that could be comparable to the state-of-the-art techniques at a much higher speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001. Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001.
2.
Zurück zum Zitat Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cogn Comput. 2009;1(1):64–76.CrossRef Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cogn Comput. 2009;1(1):64–76.CrossRef
3.
Zurück zum Zitat Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.CrossRef Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.CrossRef
4.
Zurück zum Zitat Nian R, Ji GR, Zhao WC, Feng C. Probabilistic 3D object recognition from 2D invariant view sequence based on similarity. Neurocomputing. 2007;70(4–6):785–93.CrossRef Nian R, Ji GR, Zhao WC, Feng C. Probabilistic 3D object recognition from 2D invariant view sequence based on similarity. Neurocomputing. 2007;70(4–6):785–93.CrossRef
5.
Zurück zum Zitat Zhao W, Chellappa R, Phillips P, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.CrossRef Zhao W, Chellappa R, Phillips P, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.CrossRef
7.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRef
8.
Zurück zum Zitat Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Pattern Anal Mach Intell. 1998;23(6):681–5.CrossRef Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Pattern Anal Mach Intell. 1998;23(6):681–5.CrossRef
9.
Zurück zum Zitat Brunelli R, Poggio T. Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell. 1993;15(10):1042–52.CrossRef Brunelli R, Poggio T. Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell. 1993;15(10):1042–52.CrossRef
10.
Zurück zum Zitat Heisele B, Serre T, Poggio T. A component-based framework for face detection and identification. Int J Comput Vision. 2007;74(2):167–81.CrossRef Heisele B, Serre T, Poggio T. A component-based framework for face detection and identification. Int J Comput Vision. 2007;74(2):167–81.CrossRef
11.
Zurück zum Zitat Zou J, Ji Q, Nagy G. A comparative study of local matching approach for face recognition. IEEE Trans Image Process. 2007;16(10):2617–28.PubMedCrossRef Zou J, Ji Q, Nagy G. A comparative study of local matching approach for face recognition. IEEE Trans Image Process. 2007;16(10):2617–28.PubMedCrossRef
12.
Zurück zum Zitat Wiskott L, Fellous JM, Kuiger N, von der Malsburg C. Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):775–9.CrossRef Wiskott L, Fellous JM, Kuiger N, von der Malsburg C. Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):775–9.CrossRef
13.
Zurück zum Zitat Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(3):215–43.PubMedPubMedCentral Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(3):215–43.PubMedPubMedCentral
14.
Zurück zum Zitat Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(13):607–9.PubMedCrossRef Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(13):607–9.PubMedCrossRef
15.
Zurück zum Zitat Olshausen BA, Field DJ. Sparse coding with an over-complete basis set: a strategy employed by v1? Vis Res. 1997;37(23):3311–25.PubMedCrossRef Olshausen BA, Field DJ. Sparse coding with an over-complete basis set: a strategy employed by v1? Vis Res. 1997;37(23):3311–25.PubMedCrossRef
16.
Zurück zum Zitat Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding algorithms. Adv Neural Inf Process Syst. 2006;801–8. Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding algorithms. Adv Neural Inf Process Syst. 2006;801–8.
17.
Zurück zum Zitat Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000;12(2):337–65.PubMedCrossRef Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000;12(2):337–65.PubMedCrossRef
18.
Zurück zum Zitat Johnson JS, Olshausen BA. Timecourse of neural signatures of object recognition. J Vis. 2003;3(7):499–512.PubMedCrossRef Johnson JS, Olshausen BA. Timecourse of neural signatures of object recognition. J Vis. 2003;3(7):499–512.PubMedCrossRef
19.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27.PubMedCrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27.PubMedCrossRef
20.
Zurück zum Zitat Huang JZ, Huang XL, Metaxas D. Simultaneous image transformation and sparse representation recovery. CVPR. 2008;1–8. Huang JZ, Huang XL, Metaxas D. Simultaneous image transformation and sparse representation recovery. CVPR. 2008;1–8.
21.
Zurück zum Zitat Wagner A, Wright J, Ganesh A, Zhou ZH, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. CVPR. 2009;597–604. Wagner A, Wright J, Ganesh A, Zhou ZH, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. CVPR. 2009;597–604.
22.
Zurück zum Zitat Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. ECCV. 2010;448–61. Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. ECCV. 2010;448–61.
23.
Zurück zum Zitat Shan HH, Zhang LY, Cottrell GW. Recursive ICA. Adv Neural Inf Process Syst. 2006;1273–80. Shan HH, Zhang LY, Cottrell GW. Recursive ICA. Adv Neural Inf Process Syst. 2006;1273–80.
24.
Zurück zum Zitat Shan HH, Cottrell GW. Looking around the backyard helps to recognize faces and digits. CVPR. 2008;1–8. Shan HH, Cottrell GW. Looking around the backyard helps to recognize faces and digits. CVPR. 2008;1–8.
25.
Zurück zum Zitat Huang GB, Zhu Q, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.CrossRef Huang GB, Zhu Q, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.CrossRef
26.
Zurück zum Zitat Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2:107–22.CrossRef Huang GB, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern. 2011;2:107–22.CrossRef
27.
Zurück zum Zitat Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.PubMedCrossRef Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.PubMedCrossRef
28.
Zurück zum Zitat Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.CrossRef Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70:3056–62.CrossRef
29.
Zurück zum Zitat Huang GB, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.CrossRef Huang GB, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71:3460–8.CrossRef
30.
Zurück zum Zitat Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern. 2012;42(2):513–29.CrossRef Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern. 2012;42(2):513–29.CrossRef
31.
Zurück zum Zitat Frénay B, Verleysen M. Using SVMs with randomized feature spaces: an extreme learning approach. In: Proceedings of the 18th European symposium on artificial neural networks (ESANN), Bruges, Belgium, 28–30 April 2010; 2010. p. 315–20. Frénay B, Verleysen M. Using SVMs with randomized feature spaces: an extreme learning approach. In: Proceedings of the 18th European symposium on artificial neural networks (ESANN), Bruges, Belgium, 28–30 April 2010; 2010. p. 315–20.
32.
Zurück zum Zitat Frénay B, Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing. 2011;74(16):2526–31.CrossRef Frénay B, Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing. 2011;74(16):2526–31.CrossRef
33.
Zurück zum Zitat Huang GB, Li M, Chen L, Siew C-K CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71:576–83.CrossRef Huang GB, Li M, Chen L, Siew C-K CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71:576–83.CrossRef
34.
Zurück zum Zitat Liang N, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.PubMedCrossRef Liang N, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.PubMedCrossRef
35.
Zurück zum Zitat Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern. 2009;39(4):1067–72.CrossRef Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern. 2009;39(4):1067–72.CrossRef
36.
Zurück zum Zitat Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74:2438–43.CrossRef Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74:2438–43.CrossRef
37.
Zurück zum Zitat Rong H, Ong YS, Tan AH, Zhu Z. A fast pruned extreme learning machine for classification problem. Neurocomputing. 2008;72:359–66.CrossRef Rong H, Ong YS, Tan AH, Zhu Z. A fast pruned extreme learning machine for classification problem. Neurocomputing. 2008;72:359–66.CrossRef
38.
Zurück zum Zitat Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: optimally-pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.PubMedCrossRef Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: optimally-pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.PubMedCrossRef
39.
Zurück zum Zitat Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.CrossRef Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102:78–89.CrossRef
40.
Zurück zum Zitat van Heeswijk M, Miche Y, Lindh-Knuutila T, Hilbers PA, Honkela T, Oja E, Lendasse A. Adaptive ensemble models of extreme learning machines for time series prediction. Lect Notes Comput Sci. 2009;5769:305–14.CrossRef van Heeswijk M, Miche Y, Lindh-Knuutila T, Hilbers PA, Honkela T, Oja E, Lendasse A. Adaptive ensemble models of extreme learning machines for time series prediction. Lect Notes Comput Sci. 2009;5769:305–14.CrossRef
41.
Zurück zum Zitat van Heeswijk M, Miche Y, Oja E, Lendasse A. Gpu accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing. 2011;74:2430–7.CrossRef van Heeswijk M, Miche Y, Oja E, Lendasse A. Gpu accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing. 2011;74:2430–7.CrossRef
42.
Zurück zum Zitat Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A new robust training algorithm for a class of single-hidden layer feedforward neural networks. Neurocomputing. 2011;74:2491–501.CrossRef Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A new robust training algorithm for a class of single-hidden layer feedforward neural networks. Neurocomputing. 2011;74:2491–501.CrossRef
43.
Zurück zum Zitat Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes. In: 2011 6th IEEE conference on industrial electronics and applications; 2011. p. 2524–9. Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A modified ELM algorithm for single-hidden layer feedforward neural networks with linear nodes. In: 2011 6th IEEE conference on industrial electronics and applications; 2011. p. 2524–9.
44.
Zurück zum Zitat Cheng C, Tay WP, Huang GB. Extreme learning machines for intrusion detection. In: International joint conference on neural networks (IJCNN); 2012. p. 1–8. Cheng C, Tay WP, Huang GB. Extreme learning machines for intrusion detection. In: International joint conference on neural networks (IJCNN); 2012. p. 1–8.
45.
Zurück zum Zitat Nian R, He B, Lendasse A. 3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput Appl. 2012;22(3–4):427–33. Nian R, He B, Lendasse A. 3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput Appl. 2012;22(3–4):427–33.
46.
Zurück zum Zitat Wang GR, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72:262–8.CrossRef Wang GR, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72:262–8.CrossRef
47.
Zurück zum Zitat Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory. 1998;44(2):525–36.CrossRef Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory. 1998;44(2):525–36.CrossRef
48.
Zurück zum Zitat Hansen LK, Salamon P. Neural network ensemble. IEEE Trans Pattern Anal Mach Intell. 1990;12(10):993–1001.CrossRef Hansen LK, Salamon P. Neural network ensemble. IEEE Trans Pattern Anal Mach Intell. 1990;12(10):993–1001.CrossRef
Metadaten
Titel
Fast Face Recognition Via Sparse Coding and Extreme Learning Machine
verfasst von
Bo He
Dongxun Xu
Rui Nian
Mark van Heeswijk
Qi Yu
Yoan Miche
Amaury Lendasse
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2014
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9224-1

Weitere Artikel der Ausgabe 2/2014

Cognitive Computation 2/2014 Zur Ausgabe