Skip to main content
Erschienen in: Acta Mechanica 9/2020

24.06.2020 | Original Paper

A Mixed Eulerian–Lagrangian scheme for scalar transport

verfasst von: Benoît Trouette, Georges Halim Atallah, Stéphane Vincent

Erschienen in: Acta Mechanica | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The tracking of pollutants in gas and liquid is a major problem to address in atmospheric environment, air quality characterization, and industrial material processes. A Lagrangian scheme devoted to the approximation of the advection term in an advection–diffusion equation is proposed to deal with small diffusivity values or large Péclet numbers. The Lagrangian scheme is used in practice as an Eulerian method discretized on Lagrangian marker points. Advection and diffusion of a circular concentration spot in a vortex flow are considered for validation purpose. The resulting mixed Eulerian–Lagrangian scheme reduces the numerical diffusion to almost computer error and provides better results than other Eulerian classical schemes of the literature. The scheme is finally illustrated in a natural convection situation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetMATHCrossRef Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Campos, L., Gardin, P., Vincent, S., Caltagirone, J.: Physical modeling of turbulent multiphase flow in a continuous casting steel mold. Comput. Methods Multiph. Flow VIII 89, 439–450 (2015)CrossRef Campos, L., Gardin, P., Vincent, S., Caltagirone, J.: Physical modeling of turbulent multiphase flow in a continuous casting steel mold. Comput. Methods Multiph. Flow VIII 89, 439–450 (2015)CrossRef
4.
Zurück zum Zitat Cottet, G.H.: Multi-physics and particle methods. Comput. Fluid Solid Mech. 1, 1296–1298 (2003) Cottet, G.H.: Multi-physics and particle methods. Comput. Fluid Solid Mech. 1, 1296–1298 (2003)
5.
7.
Zurück zum Zitat Delage, S., Vincent, S., Caltagirone, J.P., Heliot, J.P.: A hybrid linking approach for solving the conservation equations with an adaptive mesh refinement method. J. Computat. Appl. Math. 191(2), 280–296 (2006)MathSciNetMATHCrossRef Delage, S., Vincent, S., Caltagirone, J.P., Heliot, J.P.: A hybrid linking approach for solving the conservation equations with an adaptive mesh refinement method. J. Computat. Appl. Math. 191(2), 280–296 (2006)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Devkota, B.H., Imberger, J.: Lagrangian modeling of advection–diffusion transport in open channel flow. Water Resour. Res. 45, 12 (2009)CrossRef Devkota, B.H., Imberger, J.: Lagrangian modeling of advection–diffusion transport in open channel flow. Water Resour. Res. 45, 12 (2009)CrossRef
10.
Zurück zum Zitat Dugois, K., Vincent, S., Lasseux, D., Arquis, E., Descamps, C.: A macroscopic model for the impregnation process of composite material by a concentrated suspension. In: European Congress and Exhibition on Advanced Materials and Processes, Warsaw, Poland, September 20–24 (2015) Dugois, K., Vincent, S., Lasseux, D., Arquis, E., Descamps, C.: A macroscopic model for the impregnation process of composite material by a concentrated suspension. In: European Congress and Exhibition on Advanced Materials and Processes, Warsaw, Poland, September 20–24 (2015)
11.
Zurück zum Zitat Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Front. Multi-Phase Flow Anal. Fluid-Struct. Comput. Struct. 83(6), 479–490 (2005) Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Front. Multi-Phase Flow Anal. Fluid-Struct. Comput. Struct. 83(6), 479–490 (2005)
12.
Zurück zum Zitat Geiser, J., Elbiomy, M.: Splitting method of convection–diffusion methods with disentanglement methods. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik (2011). https://doi.org/10.18452/2819 Geiser, J., Elbiomy, M.: Splitting method of convection–diffusion methods with disentanglement methods. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik (2011). https://​doi.​org/​10.​18452/​2819
14.
Zurück zum Zitat Guichard, R., Belut, E.: Simulation of airborne nanoparticles transport, deposition and aggregation: experimental validation of a CFD-QMOM approach. J. Aerosol Sci. 104, 16–31 (2017)CrossRef Guichard, R., Belut, E.: Simulation of airborne nanoparticles transport, deposition and aggregation: experimental validation of a CFD-QMOM approach. J. Aerosol Sci. 104, 16–31 (2017)CrossRef
15.
Zurück zum Zitat Gustafsson, I.: On First and Second Order Symmetric Factorisation Methods for the Solution of Elliptic Difference Equations. Chalmers University of Technology, Chalmers (1978) Gustafsson, I.: On First and Second Order Symmetric Factorisation Methods for the Solution of Elliptic Difference Equations. Chalmers University of Technology, Chalmers (1978)
16.
Zurück zum Zitat Halim Atallah, G., Trouette, B., Belut, E., Vincent, S., Lechène, S.: Les simulation of pollutant transport in ventilation-based mitigation devices. Turbulence and Interactions 2018 (TI2018), 25–29 June, Martinique, France (2018) Halim Atallah, G., Trouette, B., Belut, E., Vincent, S., Lechène, S.: Les simulation of pollutant transport in ventilation-based mitigation devices. Turbulence and Interactions 2018 (TI2018), 25–29 June, Martinique, France (2018)
17.
Zurück zum Zitat Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetMATHCrossRef Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Hermes, V., Klioutchnikov, I., Olivier, H.: Linear stability of weno schemes coupled with explicit runge-kutta schemes. Int. J. Numer. Methods Fluids 69(6), 1065–1095 (2012)MathSciNetMATHCrossRef Hermes, V., Klioutchnikov, I., Olivier, H.: Linear stability of weno schemes coupled with explicit runge-kutta schemes. Int. J. Numer. Methods Fluids 69(6), 1065–1095 (2012)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier, London (2007) Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier, London (2007)
20.
22.
Zurück zum Zitat Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P.: Fictitious domain approach for numerical modelling of navier-stokes equations. Int. J. Numer. Methods Fluids 34(8), 651–684 (2000)MATHCrossRef Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P.: Fictitious domain approach for numerical modelling of navier-stokes equations. Int. J. Numer. Methods Fluids 34(8), 651–684 (2000)MATHCrossRef
23.
Zurück zum Zitat Khalili, A., Basu, A., Pietrzyk, U., Jørgensen, B.B.: Advective transport through permeable sediments: a new numerical and experimental approach. Acta Mech 132(1–4), 221–227 (1999)MATHCrossRef Khalili, A., Basu, A., Pietrzyk, U., Jørgensen, B.B.: Advective transport through permeable sediments: a new numerical and experimental approach. Acta Mech 132(1–4), 221–227 (1999)MATHCrossRef
26.
Zurück zum Zitat LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)MathSciNetMATHCrossRef LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Liu, C.H., Barth, M.C., Leung, D.Y.: Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios. J. Appl. Meteorol. 43(10), 1410–1424 (2004)CrossRef Liu, C.H., Barth, M.C., Leung, D.Y.: Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios. J. Appl. Meteorol. 43(10), 1410–1424 (2004)CrossRef
28.
Zurück zum Zitat Mackowski, D.W.: Conduction heat transfer: Notes for mech 7210. Mechanical Engineering Department, Auburn University (2011) Mackowski, D.W.: Conduction heat transfer: Notes for mech 7210. Mechanical Engineering Department, Auburn University (2011)
29.
Zurück zum Zitat McDermott, R., Pope, S.B.: The parabolic edge reconstruction method (perm) for Lagrangian particle advection. J. Computat. Phys. 227(11), 5447–5491 (2008)MathSciNetMATHCrossRef McDermott, R., Pope, S.B.: The parabolic edge reconstruction method (perm) for Lagrangian particle advection. J. Computat. Phys. 227(11), 5447–5491 (2008)MathSciNetMATHCrossRef
30.
31.
Zurück zum Zitat Nguyen, K., Dabdub, D.: Two-level time-marching scheme using splines for solving the advection equation. Atmos. Environ. 35(9), 1627–1637 (2001)CrossRef Nguyen, K., Dabdub, D.: Two-level time-marching scheme using splines for solving the advection equation. Atmos. Environ. 35(9), 1627–1637 (2001)CrossRef
32.
Zurück zum Zitat Poulikakos, D.: Conduction Heat Transfer (1993) Poulikakos, D.: Conduction Heat Transfer (1993)
33.
Zurück zum Zitat Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)MATHCrossRef Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)MATHCrossRef
34.
Zurück zum Zitat Rosenheinrich, W.: Tables of some indefinite integrals of Bessel functions. University of Applied Sciences, Germany (2012) Rosenheinrich, W.: Tables of some indefinite integrals of Bessel functions. University of Applied Sciences, Germany (2012)
35.
Zurück zum Zitat Sarra, S.A.: The method of characteristics with applications to conservation laws. J. Online Math. Appl. 3, 1–16 (2003) Sarra, S.A.: The method of characteristics with applications to conservation laws. J. Online Math. Appl. 3, 1–16 (2003)
38.
Zurück zum Zitat Sorek, S.: Eulerian-Lagrangian method for solving transport in aquifers. Adv. Water Resour. 11(2), 67–73 (1988)CrossRef Sorek, S.: Eulerian-Lagrangian method for solving transport in aquifers. Adv. Water Resour. 11(2), 67–73 (1988)CrossRef
39.
Zurück zum Zitat Spiegelman, M., Katz, R.F.: A semi-Lagrangian Crank-Nicolson algorithm for the numerical solution of advection-diffusion problems. Geochem. Geophys. Geosyst. 7, 4 (2006)CrossRef Spiegelman, M., Katz, R.F.: A semi-Lagrangian Crank-Nicolson algorithm for the numerical solution of advection-diffusion problems. Geochem. Geophys. Geosyst. 7, 4 (2006)CrossRef
40.
Zurück zum Zitat Sun, Z., Xiao, F.: A semi-Lagrangian multi-moment finite volume method with fourth-order weno projection. Int. J. Numer. Methods Fluids 83(4), 351–375 (2017)MathSciNetCrossRef Sun, Z., Xiao, F.: A semi-Lagrangian multi-moment finite volume method with fourth-order weno projection. Int. J. Numer. Methods Fluids 83(4), 351–375 (2017)MathSciNetCrossRef
41.
Zurück zum Zitat van der Vorst, H.A.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)MathSciNetMATHCrossRef van der Vorst, H.A.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Vincent, S., Caltagirone, J.P.: Efficient solving method for unsteady incompressible interfacial flow problems. Int. J. Numer. Methods Fluids 30(6), 795–811 (1999)MATHCrossRef Vincent, S., Caltagirone, J.P.: Efficient solving method for unsteady incompressible interfacial flow problems. Int. J. Numer. Methods Fluids 30(6), 795–811 (1999)MATHCrossRef
44.
Zurück zum Zitat Wacławczyk, M., Pozorski, J., Minier, J.P.: New molecular transport model for fdf/les of turbulence with passive scalar. Flow Turbul. Combust. 81(1–2), 235 (2008)MATHCrossRef Wacławczyk, M., Pozorski, J., Minier, J.P.: New molecular transport model for fdf/les of turbulence with passive scalar. Flow Turbul. Combust. 81(1–2), 235 (2008)MATHCrossRef
45.
Zurück zum Zitat Zahran, Y.H.: An efficient tvd-weno method for conservation laws. Numer. Methods Partial Differ. Equ. Int. J. 25(6), 1443–1467 (2009)MathSciNetMATHCrossRef Zahran, Y.H.: An efficient tvd-weno method for conservation laws. Numer. Methods Partial Differ. Equ. Int. J. 25(6), 1443–1467 (2009)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Zimmermann, S., Koumoutsakos, P., Kinzelbach, W.: Simulation of pollutant transport using a particle method. J. Comput. Phys. 173(1), 322–347 (2001)MATHCrossRef Zimmermann, S., Koumoutsakos, P., Kinzelbach, W.: Simulation of pollutant transport using a particle method. J. Comput. Phys. 173(1), 322–347 (2001)MATHCrossRef
Metadaten
Titel
A Mixed Eulerian–Lagrangian scheme for scalar transport
verfasst von
Benoît Trouette
Georges Halim Atallah
Stéphane Vincent
Publikationsdatum
24.06.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 9/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02727-2

Weitere Artikel der Ausgabe 9/2020

Acta Mechanica 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.