Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

02.01.2021

A Multi-Objective Particle Swarm Optimization Based Algorithm for Primary User Emulation Attack Detection

verfasst von: Wassim Fassi Fihri, Hassan El Ghazi, Badr Abou El Majd

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cognitive radio network (CRN) has been proposed to overcome the spectrum scarcity and the massive demand on the radio frequencies through efficient utilization and smart management of the free channels. Using a spectrum sensing process, the secondary users (SUs) share the spectrum of the primary users (PUs) without causing any interference to these latter. One of the main threats affecting the channel utilization in CRN is the primary user emulation (PUE) attack. The PUE attack utilizes a sophisticated technique to craft the same signal of a legitimate PU to gain unauthorized access to the unused channels, forcing the SUs to immediately free up vacant spectrum space, resulting in a denial of service (DoS), degradation of service, and causing a noticeable impact on CRN performance. To circumvent this attack, the anchor nodes must accurately estimate the coordinates of the PU signal source. In the literature, most of the localization of unknown signal source, in our case the PU/PUE, are based on the ranging schemes which measure the distance between the blind node and the anchors. Those anchors are aware of their location and situated in optimized positions to the signal source in order to permit an accurate PU/PUE position detection. The detection rate depends tightly on the distance separating the anchors to the signal source as well as the signal-to-noise ratio (SNR). In this paper, we demonstrate the impact of the distance on the detection error while highlighting the particle swarm optimization’s (PSO) advantage in optimizing the anchors positioning. Furthermore, we illustrate the SNR impact on the probability of detection, particularly in the situation of low SNR and the attacker in the vicinity to a real PU. The main contribution in this work is the proposition of an approach with the aim of protecting an area containing more than a single PU with a limited number of anchor nodes while providing a higher detection rate to stop any eventual PUE attack. This approach is based on a multi-objective particle swarm optimization (MOPSO) algorithm for PU/PUE position detection. It minimizes concurrently the probability of detection error related to the received signal strength (RSS)/trilateration and the SNR, with the main objective of finding all optimized positions for the mobile anchor nodes and obtains the most accurate PUE attack detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu, D., & Li, Q. (2019). Cooperative resource allocation in cognitive wireless powered communication networks with energy accumulation and deadline requirements. SCIENCE CHINA Information Sciences, 62(8), 82302.CrossRef Xu, D., & Li, Q. (2019). Cooperative resource allocation in cognitive wireless powered communication networks with energy accumulation and deadline requirements. SCIENCE CHINA Information Sciences, 62(8), 82302.CrossRef
2.
Zurück zum Zitat Salahdine, F., Kaabouch, N., & El Ghazi, H. (2016). A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 20, 61–73.CrossRef Salahdine, F., Kaabouch, N., & El Ghazi, H. (2016). A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 20, 61–73.CrossRef
3.
Zurück zum Zitat Ta, D. T., Nguyen-Thanh, N., Maillé, P., & Nguyen, V. T. (2018). Strategic surveillance against primary user emulation attacks in cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(3), 582–596.CrossRef Ta, D. T., Nguyen-Thanh, N., Maillé, P., & Nguyen, V. T. (2018). Strategic surveillance against primary user emulation attacks in cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(3), 582–596.CrossRef
4.
Zurück zum Zitat Quadri, A., Manesh, M. R., & Kaabouch, N. (2017). Performance comparison of evolutionary algorithms for noise cancellation in cognitive radio systems. In IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, pp. 1–6. Quadri, A., Manesh, M. R., & Kaabouch, N. (2017). Performance comparison of evolutionary algorithms for noise cancellation in cognitive radio systems. In IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, pp. 1–6.
5.
Zurück zum Zitat Liu, Y., Ning, P., & Dai, H. (2010). Authenticating primary users’ signals in cognitive radio networks via integrated cryptographic and wireless link signatures. In Proceedings of IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA, pp. 286–301. Liu, Y., Ning, P., & Dai, H. (2010). Authenticating primary users’ signals in cognitive radio networks via integrated cryptographic and wireless link signatures. In Proceedings of IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA, pp. 286–301.
6.
Zurück zum Zitat Khaliq, S. B., Amjad, M. F., Abbas, H., Shafqat, N., & Afzal, H. (2019). Defence against PUE attacks in ad hoc cognitive radio networks: a mean field game approach. Telecommunication Systems, 70(1), 123–140.CrossRef Khaliq, S. B., Amjad, M. F., Abbas, H., Shafqat, N., & Afzal, H. (2019). Defence against PUE attacks in ad hoc cognitive radio networks: a mean field game approach. Telecommunication Systems, 70(1), 123–140.CrossRef
7.
Zurück zum Zitat Min, A. W., Zhang, X., & Shin, K. G. (2011). Detection of small-scale primary users in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(2), 349–361.CrossRef Min, A. W., Zhang, X., & Shin, K. G. (2011). Detection of small-scale primary users in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(2), 349–361.CrossRef
8.
Zurück zum Zitat Tingting, L., & Feng, S. (2014). Research on hidden malicious user detection problem. Security and Communication Networks, 7(6), 958–963.CrossRef Tingting, L., & Feng, S. (2014). Research on hidden malicious user detection problem. Security and Communication Networks, 7(6), 958–963.CrossRef
9.
Zurück zum Zitat Pu, D., Shi, Y., Ilyashenko, A., & Wyglinski, A. M. (2011). Detecting primary user emulation attack in cognitive radio networks. In IEEE Global Telecommunications Conference (GLOBECOM), Houston, TX, USA, pp. 1–5. Pu, D., Shi, Y., Ilyashenko, A., & Wyglinski, A. M. (2011). Detecting primary user emulation attack in cognitive radio networks. In IEEE Global Telecommunications Conference (GLOBECOM), Houston, TX, USA, pp. 1–5.
10.
Zurück zum Zitat Xie, X., & Wang, W. (2013). Detecting primary user emulation attacks in cognitive radio networks via physical layer network coding. Procedia Computer Science, 21, 430–435.CrossRef Xie, X., & Wang, W. (2013). Detecting primary user emulation attacks in cognitive radio networks via physical layer network coding. Procedia Computer Science, 21, 430–435.CrossRef
11.
Zurück zum Zitat Zhou, Y., Li, J., & Lamont, L. (2012). Multilateration localization in the presence of anchor location uncertainties. In 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, pp. 309–314. Zhou, Y., Li, J., & Lamont, L. (2012). Multilateration localization in the presence of anchor location uncertainties. In 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, pp. 309–314.
12.
Zurück zum Zitat Zhao, F., Luo, H., Geng, H., & Sun, Q. (2014). An RSSI gradient-based AP localization algorithm. China Communications, 11(2), 100–108.CrossRef Zhao, F., Luo, H., Geng, H., & Sun, Q. (2014). An RSSI gradient-based AP localization algorithm. China Communications, 11(2), 100–108.CrossRef
13.
Zurück zum Zitat Paisana, F., Marchetti, N., & DaSilva, L. A. (2014). Radar, TV and cellular bands: Which spectrum access techniques for which bands. IEEE Communications Surveys and Tutorials, 16(3), 1193–1220.CrossRef Paisana, F., Marchetti, N., & DaSilva, L. A. (2014). Radar, TV and cellular bands: Which spectrum access techniques for which bands. IEEE Communications Surveys and Tutorials, 16(3), 1193–1220.CrossRef
14.
Zurück zum Zitat Yu, R., Zhang, Y., Liu, Y., Gjessing, S., & Guizani, M. (2014). Securing cognitive radio networks against primary user emulation attacks. IEEE Network, 29(4), 68–74.CrossRef Yu, R., Zhang, Y., Liu, Y., Gjessing, S., & Guizani, M. (2014). Securing cognitive radio networks against primary user emulation attacks. IEEE Network, 29(4), 68–74.CrossRef
15.
Zurück zum Zitat Fassi Fihri, W., El Ghazi, H., Abou EL Majd, B., & El Bouanani, F. (2019). A decision-making approach for detecting the primary user emulation attack in cognitive radio networks. International Journal of Communication Systems, 32(15), e4026.CrossRef Fassi Fihri, W., El Ghazi, H., Abou EL Majd, B., & El Bouanani, F. (2019). A decision-making approach for detecting the primary user emulation attack in cognitive radio networks. International Journal of Communication Systems, 32(15), e4026.CrossRef
16.
Zurück zum Zitat Bouabdellah, M., Ghribi, E., & Kaabouch, N. (2019). RSS-Based localization with maximum likelihood estimation for PUE attacker detection in cognitive radio networks. In 2019 IEEE International Conference on Electro Information Technology (EIT) (pp. 1–6). USA: Brookings. Bouabdellah, M., Ghribi, E., & Kaabouch, N. (2019). RSS-Based localization with maximum likelihood estimation for PUE attacker detection in cognitive radio networks. In 2019 IEEE International Conference on Electro Information Technology (EIT) (pp. 1–6). USA: Brookings.
17.
Zurück zum Zitat Ghanem, W. R., Shokair, M., & Desouky, M. I. (2016). An improved primary user emulation attack detection in cognitive radio networks based on firefly optimization algorithm. In 33rd National Radio Science Conference (NRSC). Aswan, Egypt: IEEE. Ghanem, W. R., Shokair, M., & Desouky, M. I. (2016). An improved primary user emulation attack detection in cognitive radio networks based on firefly optimization algorithm. In 33rd National Radio Science Conference (NRSC). Aswan, Egypt: IEEE.
18.
Zurück zum Zitat Singh, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef Singh, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef
19.
Zurück zum Zitat Amjad, M. F., Aslam, B., Attiah, A., & Zou, C. C. (2016). Towards trustworthy collaboration in spectrum sensing for ad hoc cognitive radio networks. Wireless Networks, 22(3), 781–797.CrossRef Amjad, M. F., Aslam, B., Attiah, A., & Zou, C. C. (2016). Towards trustworthy collaboration in spectrum sensing for ad hoc cognitive radio networks. Wireless Networks, 22(3), 781–797.CrossRef
20.
Zurück zum Zitat Rehman, S. U., Sowerby, K. W., & Coghill, C. (2014). Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios. IET Communications, 8(8), 1274–1284.CrossRef Rehman, S. U., Sowerby, K. W., & Coghill, C. (2014). Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios. IET Communications, 8(8), 1274–1284.CrossRef
21.
Zurück zum Zitat Xin, C., & Song, M. (2014). Detection of PUE attacks in cognitive radio networks based on signal activity pattern. IEEE Transactions on Mobile Computing, 13(5), 1022–1034.CrossRef Xin, C., & Song, M. (2014). Detection of PUE attacks in cognitive radio networks based on signal activity pattern. IEEE Transactions on Mobile Computing, 13(5), 1022–1034.CrossRef
22.
Zurück zum Zitat Dong, Q., Chen, Y., Li, X., Zeng, K., et al. (2018). An adaptive primary user emulation attack detection mechanism for cognitive radio networks. In International conference on security and privacy in communication systems (pp. 297–317). Cham: Springer. Dong, Q., Chen, Y., Li, X., Zeng, K., et al. (2018). An adaptive primary user emulation attack detection mechanism for cognitive radio networks. In International conference on security and privacy in communication systems (pp. 297–317). Cham: Springer.
23.
Zurück zum Zitat Srinivasan, S., Shivakumar, K. B., & Mohammad, M. (2019). Semi-supervised machine learning for primary user emulation attack detection and prevention through core-based analytics for cognitive radio networks. International Journal of Distributed Sensor Networks, 15(9), 1550147719860365.CrossRef Srinivasan, S., Shivakumar, K. B., & Mohammad, M. (2019). Semi-supervised machine learning for primary user emulation attack detection and prevention through core-based analytics for cognitive radio networks. International Journal of Distributed Sensor Networks, 15(9), 1550147719860365.CrossRef
25.
Zurück zum Zitat Force, S. (2002). Spectrum policy task force report. Federal Communications Commission ET Docket 02, vol. 135. Force, S. (2002). Spectrum policy task force report. Federal Communications Commission ET Docket 02, vol. 135.
26.
Zurück zum Zitat Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 1–6. Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 1–6.
27.
Zurück zum Zitat Wang, C., & Xiao, L. (2006). Locating sensors in concave areas. In Proceedings IEEE INFOCOM 2006, 25th IEEE International Conference on Computer Communications, pp. 1–12. Wang, C., & Xiao, L. (2006). Locating sensors in concave areas. In Proceedings IEEE INFOCOM 2006, 25th IEEE International Conference on Computer Communications, pp. 1–12.
28.
Zurück zum Zitat Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22(2), 387–408.CrossRef Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22(2), 387–408.CrossRef
29.
Zurück zum Zitat Raghib, A., & Abou El Majd, B. (2019). Hierarchical multiobjective approach for optimising RFID reader deployment. International Journal of Mathematical Modelling and Numerical Optimisation, 9(1), 70–88.CrossRef Raghib, A., & Abou El Majd, B. (2019). Hierarchical multiobjective approach for optimising RFID reader deployment. International Journal of Mathematical Modelling and Numerical Optimisation, 9(1), 70–88.CrossRef
30.
Zurück zum Zitat Chen, X., Gong, C., & Min, J. (2012). A node localization algorithm for wireless sensor networks based on particle swarm algorithm. Journal of Networks, 7(11), 1860.CrossRef Chen, X., Gong, C., & Min, J. (2012). A node localization algorithm for wireless sensor networks based on particle swarm algorithm. Journal of Networks, 7(11), 1860.CrossRef
31.
Zurück zum Zitat Patil, D. D., & Dangewar, B. D. (2014). Multi-objective particle swarm optimization (MOPSO) based on Pareto dominance Approach. International Journal of Computer Applications, 107(4), 13–15.CrossRef Patil, D. D., & Dangewar, B. D. (2014). Multi-objective particle swarm optimization (MOPSO) based on Pareto dominance Approach. International Journal of Computer Applications, 107(4), 13–15.CrossRef
32.
Zurück zum Zitat Coello, C. C., & Lechuga, M. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), Honolulu, HI, USA, Vol. 2, pp. 1051–1056. Coello, C. C., & Lechuga, M. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), Honolulu, HI, USA, Vol. 2, pp. 1051–1056.
33.
Zurück zum Zitat Manesh, M. R., Quadri, A., Subramanian, S., & Kaabouch, N. (2017). An optimized SNR estimation technique using particle swarm optimization algorithm. In IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–6. Manesh, M. R., Quadri, A., Subramanian, S., & Kaabouch, N. (2017). An optimized SNR estimation technique using particle swarm optimization algorithm. In IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–6.
34.
Zurück zum Zitat Fassi Fihri, W., Arjoune, Y., El Ghazi, H., Kaabouch, N., & El Majd, B. Abou (2018). A particle swarm optimization based algorithm for primary user emulation attack detection. In IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 823–827. Fassi Fihri, W., Arjoune, Y., El Ghazi, H., Kaabouch, N., & El Majd, B. Abou (2018). A particle swarm optimization based algorithm for primary user emulation attack detection. In IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 823–827.
35.
Zurück zum Zitat El Mrabet, Z., Arjoune, Y., El Ghazi, H., Abou EL Majd, B., & Kaabouch, N. (2018). Primary user emulation attacks: a detection technique based on Kalman filter. Journal of Sensor and Actuator Networks, 7(3), 26.CrossRef El Mrabet, Z., Arjoune, Y., El Ghazi, H., Abou EL Majd, B., & Kaabouch, N. (2018). Primary user emulation attacks: a detection technique based on Kalman filter. Journal of Sensor and Actuator Networks, 7(3), 26.CrossRef
36.
Zurück zum Zitat Fieldsend, J. E. (2004). Multi objective particle swarm optimization methods. Fieldsend, J. E. (2004). Multi objective particle swarm optimization methods.
Metadaten
Titel
A Multi-Objective Particle Swarm Optimization Based Algorithm for Primary User Emulation Attack Detection
verfasst von
Wassim Fassi Fihri
Hassan El Ghazi
Badr Abou El Majd
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07900-3

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt