Skip to main content

2017 | OriginalPaper | Buchkapitel

A Multisource Energy Harvesting Platform for Wireless Methane Sensor

verfasst von : Saba Akbari, Denis Spirjakin, Vladimir Sleptsov, Alexey Savkin

Erschienen in: Advances in Network Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensors used for detecting combustible gases consume significant amounts of power. Energy management for these sensors can become an important issue when they are used as part of a wireless sensor network. This is because of the fact that wireless sensors are usually powered by batteries. Batteries have a finite lifetime and their replacement can take a considerable amount of time in a gas monitoring application where thousands of sensor nodes are deployed to measure the concentration of flammable gases. Moreover, the battery replacement procedure can turn into a more complicated task if the gas monitoring network is located in a harsh environment. Energy harvesting is a method which can increase the operation time of wireless gas sensor networks. In this article, we present a multisource harvesting circuit for a wireless gas sensor node. As for ambient sources, we have chosen solar and wind energy. Energy from ambient sources is stored in supercapacitors which have a capacity of 400 F. We prove that a catalytic gas sensor can operate for 2 days without batteries by using the developed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Uzoh, P.C., Li, J., Cao, Zh., Kim, J., Nadeem, A., Han, K.: Energy efficient sleep scheduling for wireless sensor networks. In: Wang. G., Zomaya, G., Perez, G.M., Li, K. (eds.) Algorithms and Architectures for Parallel Processing, vol. 9528, pp. 430–444. Springer International Publishing (2015) Uzoh, P.C., Li, J., Cao, Zh., Kim, J., Nadeem, A., Han, K.: Energy efficient sleep scheduling for wireless sensor networks. In: Wang. G., Zomaya, G., Perez, G.M., Li, K. (eds.) Algorithms and Architectures for Parallel Processing, vol. 9528, pp. 430–444. Springer International Publishing (2015)
2.
Zurück zum Zitat Somov, A., Baranov, A., Spirjakin, D., Spirjakin, A., Sleptsov, V., Passerone, R.: Deployment and evaluation of a wireless sensor network for methane leak detection. Sensors Actuators A 202, 217–225 (2013)CrossRef Somov, A., Baranov, A., Spirjakin, D., Spirjakin, A., Sleptsov, V., Passerone, R.: Deployment and evaluation of a wireless sensor network for methane leak detection. Sensors Actuators A 202, 217–225 (2013)CrossRef
3.
Zurück zum Zitat Brunelli, D., Rossi, M.: Enhancing lifetime of WSN for natural gas leakages detection. Microelectron. J. 45, 1665–1670 (2014)CrossRef Brunelli, D., Rossi, M.: Enhancing lifetime of WSN for natural gas leakages detection. Microelectron. J. 45, 1665–1670 (2014)CrossRef
4.
Zurück zum Zitat Samotaev, N.N., Vasiliev, A.A., Podlepetsky, B.I., Sokolov, A.V., Pisliakov, A.V.: The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air. Sensors Actuators B: Chem. 127, 242–247 (2007)CrossRef Samotaev, N.N., Vasiliev, A.A., Podlepetsky, B.I., Sokolov, A.V., Pisliakov, A.V.: The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air. Sensors Actuators B: Chem. 127, 242–247 (2007)CrossRef
5.
Zurück zum Zitat Somov, A., Suchkov, A., Karelin, A., Mironov, S., Baranov, A., Karpova, E.: Compact low power wireless gas sensor node with thermo compensation for ubiquitous deployment. IEEE Trans. Ind. Inf. 11, 1660–1670 (2015)CrossRef Somov, A., Suchkov, A., Karelin, A., Mironov, S., Baranov, A., Karpova, E.: Compact low power wireless gas sensor node with thermo compensation for ubiquitous deployment. IEEE Trans. Ind. Inf. 11, 1660–1670 (2015)CrossRef
6.
Zurück zum Zitat Spirjakin, D., Baranov, A., Sleptsov, V.: Design of smart dust sensor node for combustible gas leakage monitoring. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1279–1283 (2015) Spirjakin, D., Baranov, A., Sleptsov, V.: Design of smart dust sensor node for combustible gas leakage monitoring. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1279–1283 (2015)
7.
Zurück zum Zitat Makeenkov, A., Lapitskiy, I., Somov, A., Baranov, A.: Flammable gases and vapors of flammable liquids: monitoring with infrared sensor node. Sensors Actuators B: Chem. 209, 1102–1107 (2015)CrossRef Makeenkov, A., Lapitskiy, I., Somov, A., Baranov, A.: Flammable gases and vapors of flammable liquids: monitoring with infrared sensor node. Sensors Actuators B: Chem. 209, 1102–1107 (2015)CrossRef
8.
Zurück zum Zitat British Standard Institution Staff: Electrical Apparatus for the Detection of Combustible Gases in Domestic Premises. Test Methods and Performance Requirements. British Standard Institution (2000) British Standard Institution Staff: Electrical Apparatus for the Detection of Combustible Gases in Domestic Premises. Test Methods and Performance Requirements. British Standard Institution (2000)
9.
Zurück zum Zitat Karpov, E.E., Karpov, E.F., Suchkov, A., Mironov, S., Baranov, A., Sleptsov, V., Calliari, L.: Energy efficient planar catalytic sensor for methane measurement. Sensors Actuators A 194, 176–180 (2013)CrossRef Karpov, E.E., Karpov, E.F., Suchkov, A., Mironov, S., Baranov, A., Sleptsov, V., Calliari, L.: Energy efficient planar catalytic sensor for methane measurement. Sensors Actuators A 194, 176–180 (2013)CrossRef
10.
Zurück zum Zitat Somov, A., Baranov, A., Spirjakin, D., Passerone, R.: Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sensors J. 14, 2056–2063 (2014)CrossRef Somov, A., Baranov, A., Spirjakin, D., Passerone, R.: Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sensors J. 14, 2056–2063 (2014)CrossRef
11.
Zurück zum Zitat Kumar, A., Hancke, G.P.: Energy efficient environment monitoring system based on the IEEE 802.15.4 standard for low cost requirements. IEEE Sensors J. 14, 2557–2566 (2014)CrossRef Kumar, A., Hancke, G.P.: Energy efficient environment monitoring system based on the IEEE 802.15.4 standard for low cost requirements. IEEE Sensors J. 14, 2557–2566 (2014)CrossRef
12.
Zurück zum Zitat Baranov, A., Spirjakin, D., Akbari, S., Somov, A.: Optimization of power consumption for gas sensor nodes: a survey. Sensors Actuators A 223, 279–289 (2015)CrossRef Baranov, A., Spirjakin, D., Akbari, S., Somov, A.: Optimization of power consumption for gas sensor nodes: a survey. Sensors Actuators A 223, 279–289 (2015)CrossRef
13.
Zurück zum Zitat Magno, M., Boyle, D., Brunelli, D., O’Flynn, B., Popovici, E., Benini, L.: Extended wireless monitoring through intelligent hybrid energy supply. IEEE Trans. Ind. Electron. 61, 1871–1881 (2014)CrossRef Magno, M., Boyle, D., Brunelli, D., O’Flynn, B., Popovici, E., Benini, L.: Extended wireless monitoring through intelligent hybrid energy supply. IEEE Trans. Ind. Electron. 61, 1871–1881 (2014)CrossRef
14.
Zurück zum Zitat Zahid Kausar, A.S.M., Reza, A.W., Saleh, M.U., Ramiah, H.: Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy Rev. 38, 973–989 (2014)CrossRef Zahid Kausar, A.S.M., Reza, A.W., Saleh, M.U., Ramiah, H.: Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy Rev. 38, 973–989 (2014)CrossRef
15.
Zurück zum Zitat Vullers, R.J.M., van Schaijka, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Solid-State Electron. 53, 684–693 (2009)CrossRef Vullers, R.J.M., van Schaijka, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Solid-State Electron. 53, 684–693 (2009)CrossRef
16.
Zurück zum Zitat Akbari, S.: Energy harvesting for wireless sensor networks review. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 987–992 (2014) Akbari, S.: Energy harvesting for wireless sensor networks review. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 987–992 (2014)
17.
Zurück zum Zitat ÓMathúna, C., O’Donnell, T., Martinez-Catala, R.V., Rohan, J., O’Flynn, B.: Energy scavenging for long-term deployable wireless sensor networks. Talanta 75, 613–623 (2008)CrossRef ÓMathúna, C., O’Donnell, T., Martinez-Catala, R.V., Rohan, J., O’Flynn, B.: Energy scavenging for long-term deployable wireless sensor networks. Talanta 75, 613–623 (2008)CrossRef
18.
Zurück zum Zitat Baranov, A., Spirjakin, D., Akbari, S., Somov, A., Passerone, R.: POCO: ‘Perpetual’ operation of CO wireless sensor node with hybrid power supply. Sensors Actuators A 238, 112–121 (2016)CrossRef Baranov, A., Spirjakin, D., Akbari, S., Somov, A., Passerone, R.: POCO: ‘Perpetual’ operation of CO wireless sensor node with hybrid power supply. Sensors Actuators A 238, 112–121 (2016)CrossRef
19.
Zurück zum Zitat Samotaev, N.N., Ivanova, A.V., Oblov, K.Yu., Vasiliev, A.A.: Wireless digital platform for environmental gas monitoring. In: 2015 International Siberian Conference on Control and Communications (SIBCON 2015), pp. 1–4 (2015) Samotaev, N.N., Ivanova, A.V., Oblov, K.Yu., Vasiliev, A.A.: Wireless digital platform for environmental gas monitoring. In: 2015 International Siberian Conference on Control and Communications (SIBCON 2015), pp. 1–4 (2015)
20.
Zurück zum Zitat Samotaev, N., Ivanova, A., Oblov, K., Soloviev, S., Vasiliev, A.: Wi-Fi wireless digital sensor matrix for environmental gas monitoring. Proc. Eng. 87, 1294–1297 (2014)CrossRef Samotaev, N., Ivanova, A., Oblov, K., Soloviev, S., Vasiliev, A.: Wi-Fi wireless digital sensor matrix for environmental gas monitoring. Proc. Eng. 87, 1294–1297 (2014)CrossRef
21.
Zurück zum Zitat Somov, A., Baranov, A., Suchkov, A., Karelin, A., Mironov, S., Karpova, E.: Improving interoperability of catalytic sensors. Sensors Actuators B: Chem. 221, 1156–1161 (2015)CrossRef Somov, A., Baranov, A., Suchkov, A., Karelin, A., Mironov, S., Karpova, E.: Improving interoperability of catalytic sensors. Sensors Actuators B: Chem. 221, 1156–1161 (2015)CrossRef
22.
Zurück zum Zitat Somov, A., Baranov, A., Spirjakin, D.: A wireless sensor-actuator system for hazardous gases detection and control. Sensors Actuators A 210, 157–164 (2014)CrossRef Somov, A., Baranov, A., Spirjakin, D.: A wireless sensor-actuator system for hazardous gases detection and control. Sensors Actuators A 210, 157–164 (2014)CrossRef
Metadaten
Titel
A Multisource Energy Harvesting Platform for Wireless Methane Sensor
verfasst von
Saba Akbari
Denis Spirjakin
Vladimir Sleptsov
Alexey Savkin
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44354-6_19

Premium Partner