Skip to main content
Erschienen in: Archive of Applied Mechanics 2/2019

25.09.2018 | Original

A new Bernoulli–Euler beam model based on modified gradient elasticity

verfasst von: Bing Zhao, Tao Liu, Jian Chen, Xulong Peng, Zhanping Song

Erschienen in: Archive of Applied Mechanics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new Bernoulli–Euler beam model is developed based on modified gradient elasticity theory. The governing equation and boundary conditions, which contain two internal length scales (i.e., \(l_{x}\) and \(l_{z})\), are derived by the variational principle. The new model can be simplified to the classical beam theory when the two internal length scales vanish. The numerical examples of cantilever beams subjected to two typical loadings are presented. Results show that the size effect can be captured by the new model, and the deflection decreases with the internal length scales increasing. The influence of \(l_{z}\) (the internal length scale along the beam thickness direction) on deflection is much greater than that of \(l_{x}\) (the internal length scale along the beam length direction), and the increment of stiffness is mainly controlled by \(l_{z}\). The new beam model is convenient for engineering applications and designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pei, J., Tian, F., Thundat, T.: Glucose biosensor based on the microcantilever. Anal. Chem. 76, 292–297 (2004)CrossRef Pei, J., Tian, F., Thundat, T.: Glucose biosensor based on the microcantilever. Anal. Chem. 76, 292–297 (2004)CrossRef
2.
Zurück zum Zitat Hall, N.A., Okandan, M., Degertekin, F.L.: Surface and bulk-silicon-micro-machined optical displacement sensor fabricated with the SwIFT-Lite process. J. Microelectromech. Syst. 15(4), 770–776 (2006)CrossRef Hall, N.A., Okandan, M., Degertekin, F.L.: Surface and bulk-silicon-micro-machined optical displacement sensor fabricated with the SwIFT-Lite process. J. Microelectromech. Syst. 15(4), 770–776 (2006)CrossRef
3.
Zurück zum Zitat Faris, W., Nayfeh, A.H.: Mechanical response of a capacitive microsensor under thermal load. Commun. Nonlinear Sci. Numer. Simul. 12(5), 776–783 (2007)CrossRefMATH Faris, W., Nayfeh, A.H.: Mechanical response of a capacitive microsensor under thermal load. Commun. Nonlinear Sci. Numer. Simul. 12(5), 776–783 (2007)CrossRefMATH
4.
Zurück zum Zitat Moser, Y., Gijs, M.A.M.: Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16(6), 1349–1354 (2007)CrossRef Moser, Y., Gijs, M.A.M.: Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16(6), 1349–1354 (2007)CrossRef
5.
Zurück zum Zitat Li, X.F., Peng, X.L.: Theoretical analysis of surface stress for a microcantilever with varying widths. J. Phys. D Appl. Phys. 41(41), 3142–3147 (2008) Li, X.F., Peng, X.L.: Theoretical analysis of surface stress for a microcantilever with varying widths. J. Phys. D Appl. Phys. 41(41), 3142–3147 (2008)
6.
Zurück zum Zitat Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8(4), 497–505 (1999)CrossRef Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromech. Syst. 8(4), 497–505 (1999)CrossRef
7.
Zurück zum Zitat De Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13(1), 63–74 (2004)CrossRef De Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13(1), 63–74 (2004)CrossRef
8.
Zurück zum Zitat Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A. 20, 2217–2245 (1989)CrossRef Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A. 20, 2217–2245 (1989)CrossRef
9.
Zurück zum Zitat Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Y.V.: Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855–2865 (1993)CrossRef Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Y.V.: Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855–2865 (1993)CrossRef
10.
Zurück zum Zitat Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiments. Acta Metall. Mater. 42, 475–487 (1994)CrossRef Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiments. Acta Metall. Mater. 42, 475–487 (1994)CrossRef
11.
Zurück zum Zitat Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51(8), 1477–1508 (2003)CrossRefMATH Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51(8), 1477–1508 (2003)CrossRefMATH
12.
Zurück zum Zitat McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to micro cantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)CrossRef McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to micro cantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)CrossRef
13.
Zurück zum Zitat Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids. 55(9), 1823–1852 (2007)CrossRefMATH Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids. 55(9), 1823–1852 (2007)CrossRefMATH
14.
Zurück zum Zitat Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann Archives. 1909 (reprint 2009) Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann Archives. 1909 (reprint 2009)
15.
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef
16.
Zurück zum Zitat Mühlhaus, H.B., Vardoulakis, I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)CrossRef Mühlhaus, H.B., Vardoulakis, I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)CrossRef
17.
Zurück zum Zitat Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)MathSciNetCrossRefMATH Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kang, X., Xi, Z.W.: Size effect on the dynamic characteristic of a micro beam based on Cosserat theory. J. Mech. Strength. 29(1), 1–4 (2007)MathSciNet Kang, X., Xi, Z.W.: Size effect on the dynamic characteristic of a micro beam based on Cosserat theory. J. Mech. Strength. 29(1), 1–4 (2007)MathSciNet
21.
Zurück zum Zitat Zhou, S.J., Li, Z.Q.: Length scales in the static and dynamic torsion of a circular cylindrical micro-bar. J. Shandong Univ. Technol. 31(5), 401–407 (2001) Zhou, S.J., Li, Z.Q.: Length scales in the static and dynamic torsion of a circular cylindrical micro-bar. J. Shandong Univ. Technol. 31(5), 401–407 (2001)
22.
Zurück zum Zitat Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)CrossRefMATH Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)CrossRefMATH
23.
Zurück zum Zitat Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. Mech. Phys. Solids. 49, 2245–2271 (2001)CrossRefMATH Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. Mech. Phys. Solids. 49, 2245–2271 (2001)CrossRefMATH
24.
Zurück zum Zitat Casal, P.: La théorie du second gradient et la capillarite. C.R. Acad Sci. A. 274, 1571–1574 (1972)MathSciNetMATH Casal, P.: La théorie du second gradient et la capillarite. C.R. Acad Sci. A. 274, 1571–1574 (1972)MathSciNetMATH
25.
Zurück zum Zitat Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie/Chapman and Hall, London (1995) Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie/Chapman and Hall, London (1995)
26.
Zurück zum Zitat Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40(2), 385–400 (2003)CrossRefMATH Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40(2), 385–400 (2003)CrossRefMATH
27.
Zurück zum Zitat Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)CrossRef Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)CrossRef
28.
Zurück zum Zitat Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46(5), 427–37 (2008)CrossRefMATH Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46(5), 427–37 (2008)CrossRefMATH
29.
Zurück zum Zitat Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379–3391 (2008)MathSciNetCrossRefMATH Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379–3391 (2008)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010)MathSciNetCrossRefMATH Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010)CrossRef Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010)CrossRef
32.
Zurück zum Zitat Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435–1443 (2011)CrossRefMATH Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435–1443 (2011)CrossRefMATH
33.
Zurück zum Zitat Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)MathSciNetCrossRefMATH Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Wang, B.L., Zhao, J.F., Zhou, S.J.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)CrossRef Wang, B.L., Zhao, J.F., Zhou, S.J.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)CrossRef
35.
Zurück zum Zitat Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)MathSciNetCrossRefMATH Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)CrossRefMATH Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)CrossRefMATH
37.
Zurück zum Zitat Zhao, B., Zheng, Y.R., Li, X.G., Hou, J.L.: A new form of strain gradient elasticity. In: Tu, S.T., Wang, Z.D., Sih, G.C. (eds.) Structural Integrity and Materials Ageing in Extreme Conditions, pp. 311–316. East China University of Science and Technology Press, Shanghai (2010) Zhao, B., Zheng, Y.R., Li, X.G., Hou, J.L.: A new form of strain gradient elasticity. In: Tu, S.T., Wang, Z.D., Sih, G.C. (eds.) Structural Integrity and Materials Ageing in Extreme Conditions, pp. 311–316. East China University of Science and Technology Press, Shanghai (2010)
38.
Zurück zum Zitat Song, Z.P., Zhao, B., He, J.H., Zheng, Y.R.: Modified gradient elasticity and its finite element method for shear boundary layer analysis. Mech. Res. Commun. 62, 146–154 (2014)CrossRef Song, Z.P., Zhao, B., He, J.H., Zheng, Y.R.: Modified gradient elasticity and its finite element method for shear boundary layer analysis. Mech. Res. Commun. 62, 146–154 (2014)CrossRef
39.
Zurück zum Zitat Zhao, B., Liu, T., Pan, J., Peng, X.L., Tang, X.S.: A stress analytical solution for Mode III crack within modified gradient elasticity. Mech. Res. Commun. 84, 142–147 (2017)CrossRef Zhao, B., Liu, T., Pan, J., Peng, X.L., Tang, X.S.: A stress analytical solution for Mode III crack within modified gradient elasticity. Mech. Res. Commun. 84, 142–147 (2017)CrossRef
40.
Zurück zum Zitat Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)MathSciNetCrossRefMATH Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)CrossRefMATH Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)CrossRefMATH
42.
Zurück zum Zitat Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solid. 29(5), 837–843 (2010)MathSciNetCrossRef Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solid. 29(5), 837–843 (2010)MathSciNetCrossRef
Metadaten
Titel
A new Bernoulli–Euler beam model based on modified gradient elasticity
verfasst von
Bing Zhao
Tao Liu
Jian Chen
Xulong Peng
Zhanping Song
Publikationsdatum
25.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 2/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1464-9

Weitere Artikel der Ausgabe 2/2019

Archive of Applied Mechanics 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.