Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2016

01.03.2016

A new family of tight sets in \({\mathcal {Q}}^{+}(5,q)\)

verfasst von: Jan De Beule, Jeroen Demeyer, Klaus Metsch, Morgan Rodgers

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we describe a new infinite family of \(\frac{q^{2}-1}{2}\)-tight sets in the hyperbolic quadrics \({\mathcal {Q}}^{+}(5,q)\), for \(q \equiv 5 \text{ or } 9 \,\hbox {mod}\,{12}\). Under the Klein correspondence, these correspond to Cameron–Liebler line classes of \(\mathop {\mathrm{PG}}(3,q)\) having parameter \(\frac{q^{2}-1}{2}\). This is the second known infinite family of nontrivial Cameron–Liebler line classes, the first family having been described by Bruen and Drudge with parameter \(\frac{q^{2}+1}{2}\) in \(\mathop {\mathrm{PG}}(3,q)\) for all odd \(q\). The study of Cameron–Liebler line classes is closely related to the study of symmetric tactical decompositions of \(\mathop {\mathrm{PG}}(3,q)\) (those having the same number of point classes as line classes). We show that our new examples occur as line classes in such a tactical decomposition when \(q \equiv 9 \,\hbox {mod}\,12\) (so \(q = 3^{2e}\) for some positive integer \(e\)), providing an infinite family of counterexamples to a conjecture made by Cameron and Liebler (in Linear Algebra Appl 46, 91–102, 1982); the nature of these decompositions allows us to also prove the existence of a set of type \(\left( \frac{1}{2}(3^{2e}-3^{e}), \frac{1}{2}(3^{2e}+3^{e}) \right) \) in the affine plane \(\mathop {\mathrm{AG}}(2,3^{2e})\) for all positive integers \(e\). This proves a conjecture made by Rodgers in his Ph.D. thesis.
Literatur
1.
Zurück zum Zitat Bamberg J., Penttila T.: Overgroups of cyclic Sylow subgroups of linear groups. Commun. Algebra 36(7), 2503–2543 (2008). Bamberg J., Penttila T.: Overgroups of cyclic Sylow subgroups of linear groups. Commun. Algebra 36(7), 2503–2543 (2008).
2.
Zurück zum Zitat Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007). Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007).
3.
Zurück zum Zitat Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (1998). Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (1998).
4.
Zurück zum Zitat Beukemann L., Metsch K.: Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68(1–3), 11–24 (2013). Beukemann L., Metsch K.: Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68(1–3), 11–24 (2013).
5.
Zurück zum Zitat Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in \({\rm PG} (3, q)\). Finite Fields Appl. 5(1), 35–45 (1999). Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in \({\rm PG} (3, q)\). Finite Fields Appl. 5(1), 35–45 (1999).
6.
Zurück zum Zitat Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982). Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).
7.
Zurück zum Zitat De Beule J., Hallez A., Storme L.: A non-existence result on Cameron–Liebler line classes. J. Comb. Des. 16(4), 342–349 (2008). De Beule J., Hallez A., Storme L.: A non-existence result on Cameron–Liebler line classes. J. Comb. Des. 16(4), 342–349 (2008).
8.
Zurück zum Zitat De Beule J., Govaerts P., Hallez A., Storme L.: Tight sets, weighted \(m\)-covers, weighted \(m\)-ovoids, and minihypers. Des. Codes Cryptogr. 50(2), 187–201 (2009). De Beule J., Govaerts P., Hallez A., Storme L.: Tight sets, weighted \(m\)-covers, weighted \(m\)-ovoids, and minihypers. Des. Codes Cryptogr. 50(2), 187–201 (2009).
9.
Zurück zum Zitat Drudge K.: On a conjecture of Cameron and Liebler. Eur. J. Comb. 20(4), 263–269 (1999). Drudge K.: On a conjecture of Cameron and Liebler. Eur. J. Comb. 20(4), 263–269 (1999).
10.
Zurück zum Zitat Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x = \frac{q^{2}1}{2}\). Preprint. arXiv:1406.6526. Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x = \frac{q^{2}1}{2}\). Preprint. arXiv:​1406.​6526.
11.
Zurück zum Zitat Gavrilyuk A.L., Metsch K.: A modular equality for Cameron–Liebler line classes. J. Comb. Theory Ser. A 127, 224–242 (2014). Gavrilyuk A.L., Metsch K.: A modular equality for Cameron–Liebler line classes. J. Comb. Theory Ser. A 127, 224–242 (2014).
12.
Zurück zum Zitat Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in \({\rm PG}(n, 4)\). Des. Codes Cryptogr. 1–14 (2013). Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in \({\rm PG}(n, 4)\). Des. Codes Cryptogr. 1–14 (2013).
13.
Zurück zum Zitat Govaerts P., Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3,4)\). Bull. Belgian Math. Soc. Simon Stevin 12(5), 793–804 (2005). Govaerts P., Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3,4)\). Bull. Belgian Math. Soc. Simon Stevin 12(5), 793–804 (2005).
14.
Zurück zum Zitat Govaerts P., Storme L.: On Cameron–Liebler line classes. Adv. Geom. 4(3), 279–286 (2004). Govaerts P., Storme L.: On Cameron–Liebler line classes. Adv. Geom. 4(3), 279–286 (2004).
15.
Zurück zum Zitat Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995). Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995).
16.
Zurück zum Zitat Hirschfeld J.: Projective Geometries over Finite Fields (Oxford Mathematical Monographs), 2nd edn. Oxford University Press, Oxford (1998). Hirschfeld J.: Projective Geometries over Finite Fields (Oxford Mathematical Monographs), 2nd edn. Oxford University Press, Oxford (1998).
17.
Zurück zum Zitat Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997). Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).
18.
Zurück zum Zitat Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2 < x \le q\). Bull. Lond. Math. Soc. 42(6), 991–996 (2010). Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2 < x \le q\). Bull. Lond. Math. Soc. 42(6), 991–996 (2010).
19.
Zurück zum Zitat Metsch K.: An improved bound on the existence of Cameron–Liebler line classes. J. Comb. Theory Ser. A 121, 89–93 (2014). Metsch K.: An improved bound on the existence of Cameron–Liebler line classes. J. Comb. Theory Ser. A 121, 89–93 (2014).
20.
Zurück zum Zitat Payne S.: Tight pointsets in finite generalized quadrangles. Congr. Numer. 60, 243–260 (1987). Payne S.: Tight pointsets in finite generalized quadrangles. Congr. Numer. 60, 243–260 (1987).
21.
Zurück zum Zitat Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3, q)\). Geom. Dedicata 37(3), 245–252 (1991). Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3, q)\). Geom. Dedicata 37(3), 245–252 (1991).
22.
Zurück zum Zitat Penttila T., Royle G.F.: Sets of type \((m, n)\) in the affine and projective planes of order nine. Des. Codes Cryptogr. 6(3), 229–245 (1995). Penttila T., Royle G.F.: Sets of type \((m, n)\) in the affine and projective planes of order nine. Des. Codes Cryptogr. 6(3), 229–245 (1995).
23.
Zurück zum Zitat Rodgers M.: On some new examples of Cameron–Liebler line classes. PhD Thesis, University of Colorado Denver (2012). Rodgers M.: On some new examples of Cameron–Liebler line classes. PhD Thesis, University of Colorado Denver (2012).
24.
Zurück zum Zitat Rodgers M.: Cameron–Liebler line classes. Des. Codes Cryptogr. 68(1–3), 33–37 (2013). Rodgers M.: Cameron–Liebler line classes. Des. Codes Cryptogr. 68(1–3), 33–37 (2013).
25.
Zurück zum Zitat Tee G.: Eigenvectors of block circulant and alternating circulant matrices. N. Z. J. Math. 36, 195–211 (2007). Tee G.: Eigenvectors of block circulant and alternating circulant matrices. N. Z. J. Math. 36, 195–211 (2007).
Metadaten
Titel
A new family of tight sets in
verfasst von
Jan De Beule
Jeroen Demeyer
Klaus Metsch
Morgan Rodgers
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2016
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-014-0023-9

Weitere Artikel der Ausgabe 3/2016

Designs, Codes and Cryptography 3/2016 Zur Ausgabe