Skip to main content
Erschienen in: Computational Mechanics 1/2017

11.03.2017 | Review Paper

A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics

verfasst von: Fatima-Ezzahra Fekak, Michael Brun, Anthony Gravouil, Bruno Depale

Erschienen in: Computational Mechanics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit–implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean’s event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean’s schemes and provides also an excellent energy behavior. Then, the two time scales explicit–implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit–explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abadie M (2000) Dynamic simulation of rigid bodies: modelling of frictional contact. In: Impacts in mechanical systems, pp 61–144. Springer Abadie M (2000) Dynamic simulation of rigid bodies: modelling of frictional contact. In: Impacts in mechanical systems, pp 61–144. Springer
2.
Zurück zum Zitat Acary V (2012) Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl Numer Math 62(10):1259–1275MathSciNetCrossRefMATH Acary V (2012) Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl Numer Math 62(10):1259–1275MathSciNetCrossRefMATH
3.
Zurück zum Zitat Acary V (2013) Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput Methods Appl Mech Eng 256:224–250MathSciNetCrossRefMATH Acary V (2013) Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput Methods Appl Mech Eng 256:224–250MathSciNetCrossRefMATH
4.
Zurück zum Zitat Acary V (2016) Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact. ZAMM J Appl Math Mech 96:585–603MathSciNetCrossRef Acary V (2016) Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact. ZAMM J Appl Math Mech 96:585–603MathSciNetCrossRef
5.
Zurück zum Zitat Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics, vol 35. Springer, BerlinMATH Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics, vol 35. Springer, BerlinMATH
6.
Zurück zum Zitat Acary V, Jean M (2000) Numerical modeling of three dimensional divided structures by the non smooth contact dynamics method: application to masonry structures. In: The fifth international conference on computational structures technology, pp 211–221 Acary V, Jean M (2000) Numerical modeling of three dimensional divided structures by the non smooth contact dynamics method: application to masonry structures. In: The fifth international conference on computational structures technology, pp 211–221
7.
Zurück zum Zitat Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375MathSciNetCrossRefMATH Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375MathSciNetCrossRefMATH
8.
Zurück zum Zitat Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body dynamics. Comput Methods Appl Mech Eng 177(3):183–197MathSciNetCrossRefMATH Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body dynamics. Comput Methods Appl Mech Eng 177(3):183–197MathSciNetCrossRefMATH
9.
Zurück zum Zitat Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158(3):269–300MathSciNetCrossRefMATH Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158(3):269–300MathSciNetCrossRefMATH
10.
Zurück zum Zitat Baraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp 23–34. ACM, New York, USA Baraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp 23–34. ACM, New York, USA
11.
Zurück zum Zitat Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
12.
Zurück zum Zitat Belytschko T, Mullen R (1976) Mesh partitions of explicit–implicit time integration. In: Formulations and computational algorithms in finite element analysis, pp 673–690 Belytschko T, Mullen R (1976) Mesh partitions of explicit–implicit time integration. In: Formulations and computational algorithms in finite element analysis, pp 673–690
13.
Zurück zum Zitat Belytschko T, Mullen R (1978) Stability of explicit–implicit mesh partitions in time integration. Int J Numer Methods Eng 12(10):1575–1586CrossRefMATH Belytschko T, Mullen R (1978) Stability of explicit–implicit mesh partitions in time integration. Int J Numer Methods Eng 12(10):1575–1586CrossRefMATH
14.
Zurück zum Zitat Belytschko T, Neal M (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572CrossRefMATH Belytschko T, Neal M (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572CrossRefMATH
15.
Zurück zum Zitat Betsch P, Steinmann P (2001) Conservation properties of a time fe methodpart ii: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50(8):1931–1955CrossRefMATH Betsch P, Steinmann P (2001) Conservation properties of a time fe methodpart ii: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50(8):1931–1955CrossRefMATH
16.
Zurück zum Zitat Brogliato B, Ten Dam A, Paoli L, Genot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150CrossRef Brogliato B, Ten Dam A, Paoli L, Genot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150CrossRef
17.
Zurück zum Zitat Brüls O, Acary V, Cardona A (2014) Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput Methods Appl Mech Eng 281:131–161MathSciNetCrossRef Brüls O, Acary V, Cardona A (2014) Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput Methods Appl Mech Eng 281:131–161MathSciNetCrossRef
18.
Zurück zum Zitat Brun M, Batti A, Limam A, Combescure A (2012) Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading. Soil Dyn Earthq Eng 33(1):19–37CrossRef Brun M, Batti A, Limam A, Combescure A (2012) Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading. Soil Dyn Earthq Eng 33(1):19–37CrossRef
19.
Zurück zum Zitat Brun M, Batti A, Limam A, Gravouil A (2012) Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure. Finite Elem Anal Des 52:41–59CrossRef Brun M, Batti A, Limam A, Gravouil A (2012) Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure. Finite Elem Anal Des 52:41–59CrossRef
20.
Zurück zum Zitat Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128CrossRefMATH Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128CrossRefMATH
21.
Zurück zum Zitat Casadei F (2002) A hierarchic pinball method for contact-impact in fast transient dynamics. In: VI Congresso Nazionale della Società Italiana di Matematica Applicata e Industriale (SIMAI 2002), Chia (Cagliari), Italy, pp 27–31 Casadei F (2002) A hierarchic pinball method for contact-impact in fast transient dynamics. In: VI Congresso Nazionale della Società Italiana di Matematica Applicata e Industriale (SIMAI 2002), Chia (Cagliari), Italy, pp 27–31
22.
Zurück zum Zitat Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Math Comput Model 28(4):97–108CrossRefMATH Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Math Comput Model 28(4):97–108CrossRefMATH
23.
Zurück zum Zitat Chantrait T, Rannou J, Gravouil A (2014) Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: Application to low energy impacts on composite structures. Finite Elem Anal Des 86:23–33MathSciNetCrossRef Chantrait T, Rannou J, Gravouil A (2014) Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: Application to low energy impacts on composite structures. Finite Elem Anal Des 86:23–33MathSciNetCrossRef
24.
Zurück zum Zitat Chen QZ, Acary V, Virlez G, Brüls O (2012) A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints. In: Eberhard P (ed) IMSD 2012—2nd joint international conference on multibody system dynamics. Stuttgart, Germany Chen QZ, Acary V, Virlez G, Brüls O (2012) A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints. In: Eberhard P (ed) IMSD 2012—2nd joint international conference on multibody system dynamics. Stuttgart, Germany
25.
Zurück zum Zitat Chen QZ, Acary V, Virlez G, Brüls O (2013) A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int J Numer Methods Eng 96(8):487–511MathSciNetCrossRefMATH Chen QZ, Acary V, Virlez G, Brüls O (2013) A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int J Numer Methods Eng 96(8):487–511MathSciNetCrossRefMATH
26.
Zurück zum Zitat Cirak F, West M (2005) Decomposition contact response (dcr) for explicit finite element dynamics. Int J Numer Methods Eng 64(8):1078–1110MathSciNetCrossRefMATH Cirak F, West M (2005) Decomposition contact response (dcr) for explicit finite element dynamics. Int J Numer Methods Eng 64(8):1078–1110MathSciNetCrossRefMATH
27.
Zurück zum Zitat Combescure A, Gravouil A (2001) A time-space multi-scale algorithm for transient structural nonlinear problems. Méc Ind 2(1):43–55CrossRefMATH Combescure A, Gravouil A (2001) A time-space multi-scale algorithm for transient structural nonlinear problems. Méc Ind 2(1):43–55CrossRefMATH
28.
Zurück zum Zitat Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191(11):1129–1157CrossRefMATH Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191(11):1129–1157CrossRefMATH
29.
Zurück zum Zitat Combescure A, Gravouil A, Herry B (2003) An algorithm to solve transient structural non-linear problems for non-matching time-space domains. Comput Struct 81(12):1211–1222MathSciNetCrossRef Combescure A, Gravouil A, Herry B (2003) An algorithm to solve transient structural non-linear problems for non-matching time-space domains. Comput Struct 81(12):1211–1222MathSciNetCrossRef
30.
Zurück zum Zitat Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetCrossRefMATH Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetCrossRefMATH
31.
Zurück zum Zitat Curnier A (1999) Unilateral contact. In: New developments in contact problems, pp 1–54. Springer, Wien Curnier A (1999) Unilateral contact. In: New developments in contact problems, pp 1–54. Springer, Wien
32.
Zurück zum Zitat Dabaghi F, Petrov A, Pousin J, Renard Y (2014) Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM Math Model Numer Anal 48(4):1147–1169MathSciNetCrossRefMATH Dabaghi F, Petrov A, Pousin J, Renard Y (2014) Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM Math Model Numer Anal 48(4):1147–1169MathSciNetCrossRefMATH
33.
Zurück zum Zitat De Saxcé G, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4):225–245MathSciNetCrossRefMATH De Saxcé G, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4):225–245MathSciNetCrossRefMATH
34.
Zurück zum Zitat Deuflhard P, Krause R, Ertel S (2008) A contact-stabilized newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9):1274–1290MathSciNetCrossRefMATH Deuflhard P, Krause R, Ertel S (2008) A contact-stabilized newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9):1274–1290MathSciNetCrossRefMATH
35.
Zurück zum Zitat Dostál Z, Kozubek T, Vlach O, Brzobohatỳ T (2015) Reorthogonalization-based stiffness preconditioning in feti algorithms with applications to variational inequalities. Numer Linear Algebra Appl 22(6):987–998MathSciNetCrossRefMATH Dostál Z, Kozubek T, Vlach O, Brzobohatỳ T (2015) Reorthogonalization-based stiffness preconditioning in feti algorithms with applications to variational inequalities. Numer Linear Algebra Appl 22(6):987–998MathSciNetCrossRefMATH
36.
Zurück zum Zitat Erickson D, Weber M, Sharf I (2003) Contact stiffness and damping estimation for robotic systems. Int J Robot Res 22(1):41–57CrossRef Erickson D, Weber M, Sharf I (2003) Contact stiffness and damping estimation for robotic systems. Int J Robot Res 22(1):41–57CrossRef
37.
Zurück zum Zitat Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192(5):509–533CrossRefMATH Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192(5):509–533CrossRefMATH
38.
Zurück zum Zitat Feng ZQ, Joli P, Cros JM, Magnain B (2005) The bi-potential method applied to the modeling of dynamic problems with friction. Comput Mech 36(5):375–383CrossRefMATH Feng ZQ, Joli P, Cros JM, Magnain B (2005) The bi-potential method applied to the modeling of dynamic problems with friction. Comput Mech 36(5):375–383CrossRefMATH
39.
Zurück zum Zitat Fetecau R, Marsden JE, West M (2003) Variational multisymplectic formulations of nonsmooth continuum mechanics. In: Perspectives and problems in nolinear science, pp 229–261. Springer Fetecau R, Marsden JE, West M (2003) Variational multisymplectic formulations of nonsmooth continuum mechanics. In: Perspectives and problems in nolinear science, pp 229–261. Springer
40.
Zurück zum Zitat Fetecau RC, Marsden JE, Ortiz M, West M (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 2(3):381–416MathSciNetCrossRefMATH Fetecau RC, Marsden JE, Ortiz M, West M (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 2(3):381–416MathSciNetCrossRefMATH
41.
Zurück zum Zitat Géradin M, Rixen DJ (2014) Mechanical vibrations: theory and application to structural dynamics. Wiley, New York Géradin M, Rixen DJ (2014) Mechanical vibrations: theory and application to structural dynamics. Wiley, New York
42.
Zurück zum Zitat Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225CrossRefMATH Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225CrossRefMATH
43.
Zurück zum Zitat Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58(10):1545–1569CrossRefMATH Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58(10):1545–1569CrossRefMATH
44.
Zurück zum Zitat Gravouil A, Combescure A, Brun M (2015) Heterogeneous asynchronous time integrators for computational structural dynamics. Int J Numer Methods Eng 102(3–4):202–232MathSciNetCrossRefMATH Gravouil A, Combescure A, Brun M (2015) Heterogeneous asynchronous time integrators for computational structural dynamics. Int J Numer Methods Eng 102(3–4):202–232MathSciNetCrossRefMATH
45.
Zurück zum Zitat Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, SingaporeCrossRefMATH Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, SingaporeCrossRefMATH
46.
Zurück zum Zitat Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E (2009) Asynchronous contact mechanics. ACM Trans Graph 28(3):87:1–87:12CrossRefMATH Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E (2009) Asynchronous contact mechanics. ACM Trans Graph 28(3):87:1–87:12CrossRefMATH
47.
Zurück zum Zitat Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77(10):1468–1500MathSciNetCrossRefMATH Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77(10):1468–1500MathSciNetCrossRefMATH
48.
Zurück zum Zitat Hesch C, Betsch P (2011) Transient 3d contact problemsnts method: mixed methods and conserving integration. Comput Mech 48(4):437–449CrossRefMATH Hesch C, Betsch P (2011) Transient 3d contact problemsnts method: mixed methods and conserving integration. Comput Mech 48(4):437–449CrossRefMATH
49.
Zurück zum Zitat Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48(4):461–475CrossRefMATH Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48(4):461–475CrossRefMATH
50.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Kendallville Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Kendallville
51.
Zurück zum Zitat Hughes TJ, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276CrossRefMATH Hughes TJ, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276CrossRefMATH
53.
Zurück zum Zitat Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47MathSciNetCrossRefMATH Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47MathSciNetCrossRefMATH
54.
Zurück zum Zitat Kane C, Marsden J, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49:1295–1325MathSciNetCrossRefMATH Kane C, Marsden J, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49:1295–1325MathSciNetCrossRefMATH
55.
Zurück zum Zitat Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, PhiladelphiaCrossRefMATH Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, PhiladelphiaCrossRefMATH
56.
Zurück zum Zitat Konyukhov A, Schweizerhof K (2015) On some aspects for contact with rigid surfaces: surface-to-rigid surface and curves-to-rigid surface algorithms. Comput Methods Appl Mech Eng 283:74–105MathSciNetCrossRef Konyukhov A, Schweizerhof K (2015) On some aspects for contact with rigid surfaces: surface-to-rigid surface and curves-to-rigid surface algorithms. Comput Methods Appl Mech Eng 283:74–105MathSciNetCrossRef
57.
Zurück zum Zitat Krenk S (2006) Energy conservation in Newmark based time integration algorithms. Comput Methods Appl Mech Eng 195(44):6110–6124MathSciNetCrossRefMATH Krenk S (2006) Energy conservation in Newmark based time integration algorithms. Comput Methods Appl Mech Eng 195(44):6110–6124MathSciNetCrossRefMATH
58.
Zurück zum Zitat Laursen T, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886MathSciNetCrossRefMATH Laursen T, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886MathSciNetCrossRefMATH
59.
Zurück zum Zitat Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH
60.
Zurück zum Zitat Leine RI, Aeberhard U, Glocker C (2009) Hamiltons principle as variational inequality for mechanical systems with impact. J Nonlinear Sci 19(6):633–664MathSciNetCrossRefMATH Leine RI, Aeberhard U, Glocker C (2009) Hamiltons principle as variational inequality for mechanical systems with impact. J Nonlinear Sci 19(6):633–664MathSciNetCrossRefMATH
61.
Zurück zum Zitat Lemaitre J, Chaboche JL, Benallal A, Desmorat R (2009) Mécanique des Matériaux Solides–3eme édition. Dunod Lemaitre J, Chaboche JL, Benallal A, Desmorat R (2009) Mécanique des Matériaux Solides–3eme édition. Dunod
64.
Zurück zum Zitat Mahjoubi N (2010) Méthode générale de couplage de schéma d’intégration multiéchelle en temps en dynamique des structures. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon Mahjoubi N (2010) Méthode générale de couplage de schéma d’intégration multiéchelle en temps en dynamique des structures. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon
65.
Zurück zum Zitat Mahjoubi N, Gravouil A, Combescure A, Greffet N (2011) A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput Methods Appl Mech Eng 200(9):1069–1086CrossRefMATH Mahjoubi N, Gravouil A, Combescure A, Greffet N (2011) A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput Methods Appl Mech Eng 200(9):1069–1086CrossRefMATH
66.
Zurück zum Zitat Mahjoubi N, Krenk S (2010) Multi-time-step domain coupling method with energy control. Int J Numer Methods Eng 83(13):1700–1718MathSciNetCrossRefMATH Mahjoubi N, Krenk S (2010) Multi-time-step domain coupling method with energy control. Int J Numer Methods Eng 83(13):1700–1718MathSciNetCrossRefMATH
68.
Zurück zum Zitat Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315:972–1010 Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315:972–1010
70.
Zurück zum Zitat Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, pp 1–82. Springer, Wien Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, pp 1–82. Springer, Wien
72.
Zurück zum Zitat Moreau JJ (2003) Modélisation et simulation de matériaux granulaires. In: Actes du 35eme Congres National d’Analyse Numérique Moreau JJ (2003) Modélisation et simulation de matériaux granulaires. In: Actes du 35eme Congres National d’Analyse Numérique
73.
Zurück zum Zitat Neto AG, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRef Neto AG, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRef
74.
Zurück zum Zitat Raous M (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: New developments in contact problems, pp 101–178. Springer, Wien Raous M (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: New developments in contact problems, pp 101–178. Springer, Wien
75.
Zurück zum Zitat Ryckman RA, Lew AJ (2012) An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng 89(7):869–896MathSciNetCrossRefMATH Ryckman RA, Lew AJ (2012) An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng 89(7):869–896MathSciNetCrossRefMATH
76.
Zurück zum Zitat Schindler T, Acary V (2014) Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math Comput Simul 95:180–199MathSciNetCrossRef Schindler T, Acary V (2014) Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math Comput Simul 95:180–199MathSciNetCrossRef
77.
Zurück zum Zitat Simo J, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43(5):757–792MathSciNetCrossRefMATH Simo J, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43(5):757–792MathSciNetCrossRefMATH
78.
Zurück zum Zitat Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116MathSciNetCrossRefMATH Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116MathSciNetCrossRefMATH
79.
Zurück zum Zitat Simo JC, Tarnow N, Wong K (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1):63–116MathSciNetCrossRefMATH Simo JC, Tarnow N, Wong K (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1):63–116MathSciNetCrossRefMATH
80.
Zurück zum Zitat Stewart DE (1997) Existence of solutions to rigid body dynamics and the painlevé paradoxes. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 325(6):689–693CrossRefMATH Stewart DE (1997) Existence of solutions to rigid body dynamics and the painlevé paradoxes. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 325(6):689–693CrossRefMATH
81.
Zurück zum Zitat Stewart DE (1998) Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem. Arch Ration Mech Anal 145(3):215–260 Stewart DE (1998) Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem. Arch Ration Mech Anal 145(3):215–260
82.
Zurück zum Zitat Taylor RL, Papadopoulos P (1993) On a finite element method for dynamic contact/impact problems. Int J Numer Methods Eng 36(12):2123–2140CrossRefMATH Taylor RL, Papadopoulos P (1993) On a finite element method for dynamic contact/impact problems. Int J Numer Methods Eng 36(12):2123–2140CrossRefMATH
83.
Zurück zum Zitat Wang D, Conti C, Beale D (1999) Interference impact analysis of multibody systems. J Mech Des 121(1):128–135CrossRef Wang D, Conti C, Beale D (1999) Interference impact analysis of multibody systems. J Mech Des 121(1):128–135CrossRef
84.
Zurück zum Zitat Wriggers P (1999) Finite elements for thermomechanical contact and adaptive finite element analysis of contact problems. In: New developments in contact problems, pp 179–246. Springer, Wien Wriggers P (1999) Finite elements for thermomechanical contact and adaptive finite element analysis of contact problems. In: New developments in contact problems, pp 179–246. Springer, Wien
85.
Zurück zum Zitat Wu SC, Yang SM, Haug EJ (1986) Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion-II Planar systems. Mech Mach Theory 21(5):407–416CrossRef Wu SC, Yang SM, Haug EJ (1986) Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion-II Planar systems. Mech Mach Theory 21(5):407–416CrossRef
86.
Zurück zum Zitat Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983–5994MathSciNetCrossRefMATH Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983–5994MathSciNetCrossRefMATH
Metadaten
Titel
A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics
verfasst von
Fatima-Ezzahra Fekak
Michael Brun
Anthony Gravouil
Bruno Depale
Publikationsdatum
11.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1397-0

Weitere Artikel der Ausgabe 1/2017

Computational Mechanics 1/2017 Zur Ausgabe

Neuer Inhalt