Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

A New Metric for Characterizing Dynamic Redundancy of Dense Brain Chronnectome and Its Application to Early Detection of Alzheimer’s Disease

verfasst von : Maryam Ghanbari, Li-Ming Hsu, Zhen Zhou, Amir Ghanbari, Zhanhao Mo, Pew-Thian Yap, Han Zhang, Dinggang Shen

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph theory has been used extensively to investigate information exchange efficiency among brain regions represented as graph nodes. In this work, we propose a new metric to measure how the brain network is robust or resilient to any attack on its nodes and edges. The metric measures redundancy in the sense that it calculates the minimum number of independent, not necessarily shortest, paths between every pair of nodes. We adopt this metric for characterizing (i) the redundancy of time-varying brain networks, i.e., chronnectomes, computed along the progression of Alzheimer’s disease (AD), including early mild cognitive impairment (EMCI), and (ii) changes in progressive MCI compared to stable MCI by calculating the probabilities of having at least 2 (or 3) independent paths between every pair of brain regions in a short period of time. Finally, we design a learning-based early AD detection framework, coined “REdundancy Analysis of Dynamic functional connectivity for Disease Diagnosis (READ\(^3\))”, and show its superiority over other AD early detection methods. With the ability to measure dynamic resilience and robustness of brain networks, the metric is complementary to the commonly used “cost-efficiency” in brain network analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247 (2013) Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247 (2013)
2.
Zurück zum Zitat Dai, Z., et al.: Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging 75, 71–82 (2019)CrossRef Dai, Z., et al.: Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging 75, 71–82 (2019)CrossRef
3.
Zurück zum Zitat Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3), 187–199 (2005)CrossRef Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3), 187–199 (2005)CrossRef
4.
Zurück zum Zitat Gauthier, S., et al.: Mild cognitive impairment. Lancet 367(9518), 1262–1270 (2006)CrossRef Gauthier, S., et al.: Mild cognitive impairment. Lancet 367(9518), 1262–1270 (2006)CrossRef
5.
Zurück zum Zitat Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)CrossRef Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)CrossRef
6.
Zurück zum Zitat Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)CrossRef Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)CrossRef
7.
Zurück zum Zitat Binnewijzend, M.A., et al.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33(9), 2018–2028 (2012)CrossRef Binnewijzend, M.A., et al.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33(9), 2018–2028 (2012)CrossRef
8.
Zurück zum Zitat Meier, J., Tewarie, P., Van Mieghem, P.: The union of shortest path trees of functional brain networks. Brain Connectivity 5(9), 575–581 (2015)CrossRef Meier, J., Tewarie, P., Van Mieghem, P.: The union of shortest path trees of functional brain networks. Brain Connectivity 5(9), 575–581 (2015)CrossRef
9.
Zurück zum Zitat Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRef Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRef
10.
Zurück zum Zitat Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)CrossRef Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)CrossRef
11.
Zurück zum Zitat Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)CrossRef Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)CrossRef
12.
Zurück zum Zitat Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24(1), 49–62 (2014)CrossRef Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24(1), 49–62 (2014)CrossRef
13.
Zurück zum Zitat Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17(1), 92–99 (2006)CrossRef Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17(1), 92–99 (2006)CrossRef
14.
Zurück zum Zitat Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans. Image Process. 27(5), 2340–2353 (2018)MathSciNetCrossRef Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans. Image Process. 27(5), 2340–2353 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Williams, N.J., Daly, I., Nasuto, S.: Markov model-based method to analyse time-varying networks in EEG task-related data. Front. Comput. Neurosci. 12, 76 (2018)CrossRef Williams, N.J., Daly, I., Nasuto, S.: Markov model-based method to analyse time-varying networks in EEG task-related data. Front. Comput. Neurosci. 12, 76 (2018)CrossRef
16.
Zurück zum Zitat Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)CrossRef Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)CrossRef
17.
Zurück zum Zitat Chao-Gan, Y., Yu-Feng, Z.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4 (2010) Chao-Gan, Y., Yu-Feng, Z.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4 (2010)
18.
Zurück zum Zitat Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)CrossRef Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)CrossRef
19.
Zurück zum Zitat Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S.W., Shen, D.: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum. Brain Mapp. 38(10), 5019–5034 (2017)CrossRef Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S.W., Shen, D.: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum. Brain Mapp. 38(10), 5019–5034 (2017)CrossRef
20.
Zurück zum Zitat Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013)CrossRef Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013)CrossRef
21.
Zurück zum Zitat Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage 104, 430–436 (2015)CrossRef Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage 104, 430–436 (2015)CrossRef
22.
Zurück zum Zitat Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)CrossRef Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)CrossRef
23.
Zurück zum Zitat Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)CrossRef Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)CrossRef
24.
Zurück zum Zitat Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using weka. Bioinformatics 20(15), 2479–2481 (2004)CrossRef Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using weka. Bioinformatics 20(15), 2479–2481 (2004)CrossRef
25.
Zurück zum Zitat Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.: Alzheimer’s disease neuroimaging initiative: high-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37(9), 3282–3296 (2016)CrossRef Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.: Alzheimer’s disease neuroimaging initiative: high-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37(9), 3282–3296 (2016)CrossRef
Metadaten
Titel
A New Metric for Characterizing Dynamic Redundancy of Dense Brain Chronnectome and Its Application to Early Detection of Alzheimer’s Disease
verfasst von
Maryam Ghanbari
Li-Ming Hsu
Zhen Zhou
Amir Ghanbari
Zhanhao Mo
Pew-Thian Yap
Han Zhang
Dinggang Shen
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59728-3_1

Premium Partner