Skip to main content
Erschienen in: Engineering with Computers 4/2021

08.02.2020 | Original Article

A new model-dependent time integration scheme with effective numerical damping for dynamic analysis

verfasst von: Amir Hossein Namadchi, Emadodin Jandaghi, Javad Alamatian

Erschienen in: Engineering with Computers | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new semi-explicit dissipative model-dependent time integration algorithm for solving structural dynamics problems. Motivated by the superior properties of the composite time-stepping scheme, the proposed method is designed, so that it fully inherits the numerical characteristics of its parent algorithm, namely the Bathe method. The algorithm design procedure is carried out by assuming unknown integration parameters for the proposed method. Afterwards, by time discretization of an SDOF model equation, the unknown parameters can be obtained explicitly by solving nonlinear system of equations. Some numerical examples are analyzed by the presented technique and comparisons are also made with two other dissipative model-dependent time integration algorithms as well as the Bathe method. Results demonstrate that the suggested technique can effectively damp out the spurious oscillations of the high-frequency modes, while the other schemes exhibit significant overshoot in the calculated responses. Furthermore, it is also observed that numerical results of the presented method totally coincide with the parent algorithm. While the Bathe method subdivides each time increment into two sub-steps, the proposed algorithm is single-step, non-iterative and does not involve any time-step subdividing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bathe K-J (2006) Finite element procedures. Prentice Hall, Pearson Education Inc.MATH Bathe K-J (2006) Finite element procedures. Prentice Hall, Pearson Education Inc.MATH
2.
Zurück zum Zitat Hughes TJ (1983) Analysis of transient algorithms with particular reference to stability behavior. In: Computational methods for transient analysis. North-Holland Comput Methods in Mech., Amsterdam, pp 67–155 Hughes TJ (1983) Analysis of transient algorithms with particular reference to stability behavior. In: Computational methods for transient analysis. North-Holland Comput Methods in Mech., Amsterdam, pp 67–155
3.
Zurück zum Zitat Namadchi AH, Alamatian J (2016) Explicit dynamic analysis using dynamic relaxation method. Comput Struct 175:91–99CrossRef Namadchi AH, Alamatian J (2016) Explicit dynamic analysis using dynamic relaxation method. Comput Struct 175:91–99CrossRef
4.
Zurück zum Zitat Dokainish M, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput Struct 32(6):1371–1386MathSciNetCrossRef Dokainish M, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput Struct 32(6):1371–1386MathSciNetCrossRef
5.
Zurück zum Zitat Subbaraj K, Dokainish M (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRef Subbaraj K, Dokainish M (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRef
6.
Zurück zum Zitat Bathe KJ, Wilson E (1972) Stability and accuracy analysis of direct integration methods. Earthq Eng Struct Dyn 1(3):283–291CrossRef Bathe KJ, Wilson E (1972) Stability and accuracy analysis of direct integration methods. Earthq Eng Struct Dyn 1(3):283–291CrossRef
7.
Zurück zum Zitat Kolay C, Ricles JM (2016) Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics. Int J Numer Methods Eng 107(1):49–73MathSciNetCrossRef Kolay C, Ricles JM (2016) Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics. Int J Numer Methods Eng 107(1):49–73MathSciNetCrossRef
8.
Zurück zum Zitat Chang S-Y (2010) A new family of explicit methods for linear structural dynamics. Comput Struct 88(11–12):755–772CrossRef Chang S-Y (2010) A new family of explicit methods for linear structural dynamics. Comput Struct 88(11–12):755–772CrossRef
9.
Zurück zum Zitat Chang S-Y (2002) Explicit pseudodynamic algorithm with unconditional stability. J Eng Mech 128(9):935–947CrossRef Chang S-Y (2002) Explicit pseudodynamic algorithm with unconditional stability. J Eng Mech 128(9):935–947CrossRef
10.
Zurück zum Zitat Namadchi AH, Fattahi F, Alamatian J (2017) Semiexplicit unconditionally stable time integration for dynamic analysis based on composite scheme. J Eng Mech 143(10):04017119CrossRef Namadchi AH, Fattahi F, Alamatian J (2017) Semiexplicit unconditionally stable time integration for dynamic analysis based on composite scheme. J Eng Mech 143(10):04017119CrossRef
11.
Zurück zum Zitat Chang SY (2014) A family of noniterative integration methods with desired numerical dissipation. Int J Numer Methods Eng 100(1):62–86MathSciNetCrossRef Chang SY (2014) A family of noniterative integration methods with desired numerical dissipation. Int J Numer Methods Eng 100(1):62–86MathSciNetCrossRef
12.
Zurück zum Zitat Chen C, Ricles JM (2008) Development of direct integration algorithms for structural dynamics using discrete control theory. J Eng Mech 134(8):676–683CrossRef Chen C, Ricles JM (2008) Development of direct integration algorithms for structural dynamics using discrete control theory. J Eng Mech 134(8):676–683CrossRef
13.
Zurück zum Zitat Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60(2):371–375MathSciNetCrossRef Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60(2):371–375MathSciNetCrossRef
14.
Zurück zum Zitat Bathe K-J, Noh G (2012) Insight into an implicit time integration scheme for structural dynamics. Comput Struct 98:1–6CrossRef Bathe K-J, Noh G (2012) Insight into an implicit time integration scheme for structural dynamics. Comput Struct 98:1–6CrossRef
15.
Zurück zum Zitat Kolay C, Ricles JM (2014) Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthq Eng Struct Dyn 43(9):1361–1380CrossRef Kolay C, Ricles JM (2014) Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthq Eng Struct Dyn 43(9):1361–1380CrossRef
16.
Zurück zum Zitat Hilber HM, Hughes TJ, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292CrossRef Hilber HM, Hughes TJ, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292CrossRef
17.
Zurück zum Zitat Chang S-Y (2015) Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn 79(2):1625–1649CrossRef Chang S-Y (2015) Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn 79(2):1625–1649CrossRef
18.
Zurück zum Zitat Wood W, Bossak M, Zienkiewicz O (1980) An alpha modification of Newmark’s method. Int J Numer Methods Eng 15(10):1562–1566MathSciNetCrossRef Wood W, Bossak M, Zienkiewicz O (1980) An alpha modification of Newmark’s method. Int J Numer Methods Eng 15(10):1562–1566MathSciNetCrossRef
19.
Zurück zum Zitat Bathe K-J (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7–8):437–445MathSciNetCrossRef Bathe K-J (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7–8):437–445MathSciNetCrossRef
20.
Zurück zum Zitat Bathe K-J, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31–32):2513–2524MathSciNetCrossRef Bathe K-J, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31–32):2513–2524MathSciNetCrossRef
21.
Zurück zum Zitat Liu T et al (2012) An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures. Comput Struct 106:20–28CrossRef Liu T et al (2012) An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures. Comput Struct 106:20–28CrossRef
22.
Zurück zum Zitat Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105CrossRef Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105CrossRef
23.
Zurück zum Zitat Wen W et al (2017) A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis. Comput Struct 190:126–149CrossRef Wen W et al (2017) A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis. Comput Struct 190:126–149CrossRef
24.
Zurück zum Zitat Liang X, Mosalam KM, Günay S (2016) Direct integration algorithms for efficient nonlinear seismic response of reinforced concrete highway bridges. J Bridge Eng 21(7):04016041CrossRef Liang X, Mosalam KM, Günay S (2016) Direct integration algorithms for efficient nonlinear seismic response of reinforced concrete highway bridges. J Bridge Eng 21(7):04016041CrossRef
25.
Zurück zum Zitat Zhang J, Liu Y, Liu D (2017) Accuracy of a composite implicit time integration scheme for structural dynamics. Int J Numer Methods Eng 109(3):368–406MathSciNetCrossRef Zhang J, Liu Y, Liu D (2017) Accuracy of a composite implicit time integration scheme for structural dynamics. Int J Numer Methods Eng 109(3):368–406MathSciNetCrossRef
26.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Chelmsford Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Chelmsford
27.
Zurück zum Zitat Noh G, Bathe K-J (2019) The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method. Comput Struct 212:299–310CrossRef Noh G, Bathe K-J (2019) The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method. Comput Struct 212:299–310CrossRef
28.
Zurück zum Zitat Noh G, Bathe K-J (2018) Further insights into an implicit time integration scheme for structural dynamics. Comput Struct 202:15–24CrossRef Noh G, Bathe K-J (2018) Further insights into an implicit time integration scheme for structural dynamics. Comput Struct 202:15–24CrossRef
29.
Zurück zum Zitat Huang C, Fu M (2018) A composite collocation method with low-period elongation for structural dynamics problems. Comput Struct 195:74–84CrossRef Huang C, Fu M (2018) A composite collocation method with low-period elongation for structural dynamics problems. Comput Struct 195:74–84CrossRef
30.
Zurück zum Zitat Wen W et al (2017) A novel sub-step composite implicit time integration scheme for structural dynamics. Comput Struct 182:176–186CrossRef Wen W et al (2017) A novel sub-step composite implicit time integration scheme for structural dynamics. Comput Struct 182:176–186CrossRef
31.
Zurück zum Zitat Malakiyeh MM, Shojaee S, Javaran SH (2018) Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function. Comput Struct 194:15–31CrossRef Malakiyeh MM, Shojaee S, Javaran SH (2018) Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function. Comput Struct 194:15–31CrossRef
32.
Zurück zum Zitat Kadapa C, Dettmer W, Perić D (2017) On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems. Comput Struct 193:226–238CrossRef Kadapa C, Dettmer W, Perić D (2017) On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems. Comput Struct 193:226–238CrossRef
33.
Zurück zum Zitat Shojaee S, Rostami S, Abbasi A (2015) An unconditionally stable implicit time integration algorithm: modified quartic B-spline method. Comput Struct 153:98–111CrossRef Shojaee S, Rostami S, Abbasi A (2015) An unconditionally stable implicit time integration algorithm: modified quartic B-spline method. Comput Struct 153:98–111CrossRef
34.
Zurück zum Zitat Crisfield MA (1997) Non-linear finite element analysis of solids and structures: advanced topics. Wiley, New York, p 508 Crisfield MA (1997) Non-linear finite element analysis of solids and structures: advanced topics. Wiley, New York, p 508
35.
Zurück zum Zitat Cook RD (2007) Concepts and applications of finite element analysis. Wiley, New York Cook RD (2007) Concepts and applications of finite element analysis. Wiley, New York
36.
Zurück zum Zitat Chang S-Y (2018) An unusual amplitude growth property and its remedy for structure-dependent integration methods. Comput Methods Appl Mech Eng 330:498–521MathSciNetCrossRef Chang S-Y (2018) An unusual amplitude growth property and its remedy for structure-dependent integration methods. Comput Methods Appl Mech Eng 330:498–521MathSciNetCrossRef
37.
Zurück zum Zitat Koohestani K, Kaveh A (2010) Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Elem Anal Des 46(10):943–948CrossRef Koohestani K, Kaveh A (2010) Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Elem Anal Des 46(10):943–948CrossRef
38.
Zurück zum Zitat Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11(1–2):23–48CrossRef Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11(1–2):23–48CrossRef
39.
Zurück zum Zitat Namadchi AH, Alamatian J (2017) Dynamic relaxation method based on Lanczos algorithm. Int J Numer Methods Eng 112(10):1473–1492MathSciNetCrossRef Namadchi AH, Alamatian J (2017) Dynamic relaxation method based on Lanczos algorithm. Int J Numer Methods Eng 112(10):1473–1492MathSciNetCrossRef
40.
Zurück zum Zitat Pica A, Wood R, Hinton E (1980) Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Comput Struct 11(3):203–215MathSciNetCrossRef Pica A, Wood R, Hinton E (1980) Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Comput Struct 11(3):203–215MathSciNetCrossRef
41.
Zurück zum Zitat Goudreau GL, Taylor RL (1973) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2(1):69–97MathSciNetCrossRef Goudreau GL, Taylor RL (1973) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2(1):69–97MathSciNetCrossRef
Metadaten
Titel
A new model-dependent time integration scheme with effective numerical damping for dynamic analysis
verfasst von
Amir Hossein Namadchi
Emadodin Jandaghi
Javad Alamatian
Publikationsdatum
08.02.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-00960-w

Weitere Artikel der Ausgabe 4/2021

Engineering with Computers 4/2021 Zur Ausgabe

Neuer Inhalt