2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
With the development of the Internet, a large number of data sets are generated, which contain valuable resources. Meanwhile, there are various graphical representations in real life, such as social networks, citation networks, and user networks. For user networks, there also exists rich information about entities except the network structure. Therefore, predicting the type of nodes in the network can help us quickly identify user type, citations type etc. In this paper, a new method based on deep learning is proposed to predict the class of node. Two public data sets are used as training sets. First, the node features are embedded to pre-train the neighbor’s neighborhood structure features, then the pre-trained data is used to input to the classification model, and the structural feature parameters are loaded. The final result shows that the prediction accuracy is increased by nearly 25% higher than the baseline model. The F1 scores of the model tested on the two data sets are 83.5% and 80.2%, respectively.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
Zurück zum Zitat Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization. In: Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summarization, pp. 17–24. Association for Computational Linguistics (2008) Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization. In: Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summarization, pp. 17–24. Association for Computational Linguistics (2008)
Zurück zum Zitat Al-Hami, M., Lakaemper, R., Rawashdeh, M., et al.: Camera localization for a human-pose in 3D space using a single 2D human-pose image with landmarks: a multimedia social network emerging demand. Multimedia Tools Appl. 78(3), 3587–3608 (2019) CrossRef Al-Hami, M., Lakaemper, R., Rawashdeh, M., et al.: Camera localization for a human-pose in 3D space using a single 2D human-pose image with landmarks: a multimedia social network emerging demand. Multimedia Tools Appl.
78(3), 3587–3608 (2019)
CrossRef
Zurück zum Zitat Collobert, R., Weston, J., Bottou, L., et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011) Collobert, R., Weston, J., Bottou, L., et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res.
12, 2493–2537 (2011)
Zurück zum Zitat Walke, D., Xie, H., Yan, K.-K., Maslov, S.: Ranking scientific publication using a model of network traffic. J. Stat. Mech. Theory Exp. 2007(06), P06010 (2007) Walke, D., Xie, H., Yan, K.-K., Maslov, S.: Ranking scientific publication using a model of network traffic. J. Stat. Mech. Theory Exp.
2007(06), P06010 (2007)
Zurück zum Zitat Lin, M., Chen, Q., Yan, S.: Network in network, arXiv preprint arXiv:1312.4400 (2013) Lin, M., Chen, Q., Yan, S.: Network in network, arXiv preprint
arXiv:1312.4400 (2013)
Zurück zum Zitat Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. Large-scale kernel machines 34(5), 1–41 (2007) Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. Large-scale kernel machines
34(5), 1–41 (2007)
Zurück zum Zitat Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (1967) CrossRef Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (1967)
CrossRef
Zurück zum Zitat Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference, Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016) Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference, Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)
Zurück zum Zitat Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013) Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013)
Zurück zum Zitat Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 496–503 (2003) Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 496–503 (2003)
Zurück zum Zitat Géron, A.: Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme. O'Reilly (2018) Géron, A.: Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme. O'Reilly (2018)
Zurück zum Zitat Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014) Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)
Zurück zum Zitat Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp. 701–710 (2014) Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp. 701–710 (2014)
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)
Zurück zum Zitat Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015) CrossRef Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)
CrossRef
Zurück zum Zitat Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015) Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst.
16(2), 865–873 (2015)
Zurück zum Zitat Ferdowsi, A., Saad, W.: Deep learning-based dynamic watermarking for secure signal authentication in the Internet of Things. In: Proceedings of IEEE International Conference Communications (ICC), pp. 1–6 (2018) Ferdowsi, A., Saad, W.: Deep learning-based dynamic watermarking for secure signal authentication in the Internet of Things. In: Proceedings of IEEE International Conference Communications (ICC), pp. 1–6 (2018)
Zurück zum Zitat Association J S Accuracy (trueness and precision) of measurement methods and results - Part 6: Use in practice of accuracy values Association J S Accuracy (trueness and precision) of measurement methods and results - Part 6: Use in practice of accuracy values
Zurück zum Zitat Gao, M., Jin, C.Q., Qian, Q., et al.: The real-time personalized recommendation for the micro-blog system. J. Comput. Sci. 04, 963–975 (2014) Gao, M., Jin, C.Q., Qian, Q., et al.: The real-time personalized recommendation for the micro-blog system. J. Comput. Sci.
04, 963–975 (2014)
Zurück zum Zitat Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234 (2016) Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234 (2016)
Zurück zum Zitat Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., et al.: Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 2224–2232 (2015) Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., et al.: Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 2224–2232 (2015)
Zurück zum Zitat Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_5 Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-8462-3_5
Zurück zum Zitat Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016) Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)
Zurück zum Zitat Luo, X., Xuan, J., Liu, H.: Web event state prediction model: combining prior knowledge with real time data. J. Web Eng. 13(5&6), 483–506 (2014) Luo, X., Xuan, J., Liu, H.: Web event state prediction model: combining prior knowledge with real time data. J. Web Eng.
13(5&6), 483–506 (2014)
Zurück zum Zitat Vaswani, A., Bengio, S., Brevdo, E., et al.: Tensor2tensor for neural machine translation. arXiv preprint arXiv:1803.07416 (2018) Vaswani, A., Bengio, S., Brevdo, E., et al.: Tensor2tensor for neural machine translation. arXiv preprint
arXiv:1803.07416 (2018)
Zurück zum Zitat Bayer, A.O., Riccardi, G.: Semantic language models with deep neural networks. Comput. Speech Lang. 40, 1–22 (2016) Bayer, A.O., Riccardi, G.: Semantic language models with deep neural networks. Comput. Speech Lang.
40, 1–22 (2016)
- Titel
- A New Model for Predicting Node Type Based on Deep Learning
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_20
- Autoren:
-
Bo Gong
Daji Ergu
Kuiyi Liu
Ying Cai
- Verlag
- Springer Singapore
- Sequenznummer
- 20