Skip to main content
Erschienen in: Neural Processing Letters 2/2015

01.10.2015

A New Multilayer Perceptron Pruning Algorithm for Classification and Regression Applications

verfasst von: Philippe Thomas, Marie-Christine Suhner

Erschienen in: Neural Processing Letters | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimizing the structure of neural networks remains a hard task. If too small, the architecture does not allow for proper learning from the data, whereas if the structure is too large, learning leads to the well-known overfitting problem. This paper considers this issue, and proposes a new pruning approach to determine the optimal structure. Our algorithm is based on variance sensitivity analysis, and prunes the different types of unit (hidden neurons, inputs, and weights) sequentially. The stop criterion is based on a performance evaluation of the network results from both the learning and validation datasets. Four variants of this algorithm are proposed. These variants use two different estimators of the variance. They are tested and compared with four classical algorithms on three classification and three regression problems. The results show that the proposed algorithms outperform the classical approaches in terms of both computational time and accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rumelhart DE, McClelland JL (1986) Parallel distributed processing: exploration in the microstructure of cognition, vol 1. MIT Press, Cambridge Rumelhart DE, McClelland JL (1986) Parallel distributed processing: exploration in the microstructure of cognition, vol 1. MIT Press, Cambridge
2.
Zurück zum Zitat Han HG, Qiao JF (2013) A structure optimisation algorithm for feedforward neural network construction. Neurocomputing 99:347–357CrossRef Han HG, Qiao JF (2013) A structure optimisation algorithm for feedforward neural network construction. Neurocomputing 99:347–357CrossRef
3.
Zurück zum Zitat Patel MC, Panchal M (2012) A review on ensemble of diverse artificial neural networks. Int J Adv Res Comput Eng Technol 1:63–70CrossRef Patel MC, Panchal M (2012) A review on ensemble of diverse artificial neural networks. Int J Adv Res Comput Eng Technol 1:63–70CrossRef
4.
Zurück zum Zitat Drucker H (2002) Effect of pruning and early stopping on performance of a boosting ensemble. Comput Stat Data Anal 38:393–406 Drucker H (2002) Effect of pruning and early stopping on performance of a boosting ensemble. Comput Stat Data Anal 38:393–406
5.
Zurück zum Zitat Kerlirzin P, Vallet F (1993) Robustness in multilayer perceptrons. Neural Comput 5:473–482CrossRefMATH Kerlirzin P, Vallet F (1993) Robustness in multilayer perceptrons. Neural Comput 5:473–482CrossRefMATH
6.
Zurück zum Zitat Thomas P, Bloch G, Sirou F, Eustache V (1999) Neural modeling of an induction furnace using robust learning criteria. J Integr Comput Aided Eng 6:15–25MATH Thomas P, Bloch G, Sirou F, Eustache V (1999) Neural modeling of an induction furnace using robust learning criteria. J Integr Comput Aided Eng 6:15–25MATH
7.
Zurück zum Zitat Williams PM (1995) Bayesian regularization and pruning using a Laplace prior. Neural Comput 7:117–143CrossRef Williams PM (1995) Bayesian regularization and pruning using a Laplace prior. Neural Comput 7:117–143CrossRef
9.
Zurück zum Zitat Cawley GC, Talbot NLC (2007) Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J Mach Learn Res 8:841–861 Cawley GC, Talbot NLC (2007) Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J Mach Learn Res 8:841–861
10.
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford
11.
Zurück zum Zitat Beigy H, Meybodi MR (2009) A learning automata-based algorithm for determination of the number of hidden units for three-layer neural networks. Int J Syst Sci 40:101–118CrossRefMATH Beigy H, Meybodi MR (2009) A learning automata-based algorithm for determination of the number of hidden units for three-layer neural networks. Int J Syst Sci 40:101–118CrossRefMATH
12.
Zurück zum Zitat Kruschke JH (1989) Improving generalization in backpropagation networks. Proc Int Joint Conf Neural Netw 1:443–447CrossRef Kruschke JH (1989) Improving generalization in backpropagation networks. Proc Int Joint Conf Neural Netw 1:443–447CrossRef
13.
Zurück zum Zitat LeCun Y, Denker J, Solla S, Howard RE, Jackel LD (1990) Optimal brain damage. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, San Mateo LeCun Y, Denker J, Solla S, Howard RE, Jackel LD (1990) Optimal brain damage. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, San Mateo
14.
Zurück zum Zitat Hassibi B, Stork DG (1993) Second order derivatives for network pruning: optimal brain surgeon. In: Hanson SH, Cowan JD, Gilles CL (eds) Advances in neural information processing systems. Morgan Kaufmann, San Mateo Hassibi B, Stork DG (1993) Second order derivatives for network pruning: optimal brain surgeon. In: Hanson SH, Cowan JD, Gilles CL (eds) Advances in neural information processing systems. Morgan Kaufmann, San Mateo
15.
Zurück zum Zitat Reed R (1993) Pruning algorithm—a survey. IEEE Trans Neural Netw 4:740–747CrossRef Reed R (1993) Pruning algorithm—a survey. IEEE Trans Neural Netw 4:740–747CrossRef
16.
Zurück zum Zitat Jutten C, Fambon O (1995) Pruning methods: a review. Proc Eur Symp Artif Neural Netw pp 129–140 Jutten C, Fambon O (1995) Pruning methods: a review. Proc Eur Symp Artif Neural Netw pp 129–140
17.
Zurück zum Zitat Mezard M, Nadal JP (1989) Learning in feedforward neural networks: the tiling algorithm. J Phys 22:1285–1296MathSciNetMATH Mezard M, Nadal JP (1989) Learning in feedforward neural networks: the tiling algorithm. J Phys 22:1285–1296MathSciNetMATH
19.
Zurück zum Zitat Yeung DY (1991) Automatic determination of network size for supervised learning. IEEE Int J Conf Neural Netw 1:158–164MathSciNetMATH Yeung DY (1991) Automatic determination of network size for supervised learning. IEEE Int J Conf Neural Netw 1:158–164MathSciNetMATH
20.
Zurück zum Zitat Chentouf R, Jutten C (1996) Combining sigmoids and radial basis function in evolutive neural architecture. Eur Symp Artif Neural Netw 129–134 Chentouf R, Jutten C (1996) Combining sigmoids and radial basis function in evolutive neural architecture. Eur Symp Artif Neural Netw 129–134
21.
Zurück zum Zitat Hirose Y, Yamashita K, Hijita S (1991) Back-propagation algorithm which varies the number of hidden units. Neural Netw 4:61–66CrossRef Hirose Y, Yamashita K, Hijita S (1991) Back-propagation algorithm which varies the number of hidden units. Neural Netw 4:61–66CrossRef
22.
Zurück zum Zitat Nabhan TM, Zomaya AY (1994) Toward generating neural network structures for function approximation. Neural Netw 7:89–99CrossRefMATH Nabhan TM, Zomaya AY (1994) Toward generating neural network structures for function approximation. Neural Netw 7:89–99CrossRefMATH
23.
Zurück zum Zitat Narasimha PL, Delashmit WH, Manry MT, Li J, Maldonado F (2008) An integrated growing-pruning method for feedforward network training. Neurocomputing 71:2831–2847CrossRef Narasimha PL, Delashmit WH, Manry MT, Li J, Maldonado F (2008) An integrated growing-pruning method for feedforward network training. Neurocomputing 71:2831–2847CrossRef
24.
Zurück zum Zitat Whitley D, Bogart C (1990) The evolution of connectivity: pruning neural networks using genetic algorithms. Proc Int J Conf Neural Netw 134–137 Whitley D, Bogart C (1990) The evolution of connectivity: pruning neural networks using genetic algorithms. Proc Int J Conf Neural Netw 134–137
25.
Zurück zum Zitat Angeline PJ, Saunders GM, Pollack JB (1994) Evolutionary algorithm that construct recurrent neural networks. IEEE Trans Neural Netw 5:54–65CrossRefMATH Angeline PJ, Saunders GM, Pollack JB (1994) Evolutionary algorithm that construct recurrent neural networks. IEEE Trans Neural Netw 5:54–65CrossRefMATH
26.
Zurück zum Zitat Engelbrecht AP (2001) A new pruning heuristic based on variance analysis of sensitivity information. IEEE Trans Neural Netw 12:1386–1399CrossRefMATH Engelbrecht AP (2001) A new pruning heuristic based on variance analysis of sensitivity information. IEEE Trans Neural Netw 12:1386–1399CrossRefMATH
27.
Zurück zum Zitat Kolmogorov AN (1957) On the representational of continuous functions of many variables by superpositions of continuous functional of one variable and addition. Doklady Akademii Nauk URSS 114:953–956MathSciNet Kolmogorov AN (1957) On the representational of continuous functions of many variables by superpositions of continuous functional of one variable and addition. Doklady Akademii Nauk URSS 114:953–956MathSciNet
29.
Zurück zum Zitat Funahashi K (1989) On the approximate realisation of continuous mapping by neural networks. Neural Netw 2:183–192CrossRefMATH Funahashi K (1989) On the approximate realisation of continuous mapping by neural networks. Neural Netw 2:183–192CrossRefMATH
30.
Zurück zum Zitat Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. IEEE First Ann Int Conf Neural Netw 3:11–13MATH Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. IEEE First Ann Int Conf Neural Netw 3:11–13MATH
31.
Zurück zum Zitat Huang GB (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14:274–281CrossRef Huang GB (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14:274–281CrossRef
32.
Zurück zum Zitat Dreyfus G, Martinez JM, Samuelides M, Gordon MB, Badran F, Thiria S, Hérault L (2002) Réseaux de neurones: méthodologies et applications. Editions Eyrolles, Paris Dreyfus G, Martinez JM, Samuelides M, Gordon MB, Badran F, Thiria S, Hérault L (2002) Réseaux de neurones: méthodologies et applications. Editions Eyrolles, Paris
33.
Zurück zum Zitat Yao X (1993) Evolutionary artificial neural networks. Int J Neural Syst 4:203–222CrossRef Yao X (1993) Evolutionary artificial neural networks. Int J Neural Syst 4:203–222CrossRef
34.
Zurück zum Zitat Huang DS, Du JX (2008) A constructive hybrid structure approach to solve routing problems. IEEE Trans Neural Netw 19:2099–2115CrossRefMATH Huang DS, Du JX (2008) A constructive hybrid structure approach to solve routing problems. IEEE Trans Neural Netw 19:2099–2115CrossRefMATH
35.
Zurück zum Zitat Mantzaris D, Anastassopoulos G, Adamopoulos A (2011) Genetic algorithm pruning of probabilitic neural networks in medical disease estimation. Neural Netw 24:831–835CrossRef Mantzaris D, Anastassopoulos G, Adamopoulos A (2011) Genetic algorithm pruning of probabilitic neural networks in medical disease estimation. Neural Netw 24:831–835CrossRef
36.
Zurück zum Zitat Stathakis D (2009) How many hidden layers and nodes? Int J Remote Sens 30:2133–2147CrossRef Stathakis D (2009) How many hidden layers and nodes? Int J Remote Sens 30:2133–2147CrossRef
37.
Zurück zum Zitat Yang SH, Chen YP (2012) An evolutionary constructive and pruning algorithm for artificial neural networks and its applications. Neurocomputing 86:140–149CrossRef Yang SH, Chen YP (2012) An evolutionary constructive and pruning algorithm for artificial neural networks and its applications. Neurocomputing 86:140–149CrossRef
38.
Zurück zum Zitat Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5:39–53CrossRefMATH Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5:39–53CrossRefMATH
39.
Zurück zum Zitat Wilamowski BM, Cotton NJ, Kaynak O, Dundar G (2007) Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks. Proc IEEE ISIE 3298–3789 Wilamowski BM, Cotton NJ, Kaynak O, Dundar G (2007) Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks. Proc IEEE ISIE 3298–3789
40.
Zurück zum Zitat Puma-Villanueva WJ, Von Zuben FJ (2010) Evolving arbitrarily connected feedforward neural networks via genetic algorithm. Proc Brazilian Symp Artif Neural Netw 23–28 Puma-Villanueva WJ, Von Zuben FJ (2010) Evolving arbitrarily connected feedforward neural networks via genetic algorithm. Proc Brazilian Symp Artif Neural Netw 23–28
41.
Zurück zum Zitat Puma-Villanueva WJ, Dos Santos EP, Von Zuben FJ (2012) A constructive algorithm to synthesize arbitrarily connected feedforward neural networks. Neurocomputing 75:23–28CrossRefMATH Puma-Villanueva WJ, Dos Santos EP, Von Zuben FJ (2012) A constructive algorithm to synthesize arbitrarily connected feedforward neural networks. Neurocomputing 75:23–28CrossRefMATH
42.
Zurück zum Zitat Kwok TY, Yeung DY (1997) Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neural Netw 8:630–645CrossRef Kwok TY, Yeung DY (1997) Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neural Netw 8:630–645CrossRef
43.
Zurück zum Zitat Ash T (1989) Dynamic node creation in backpropagation networks. Connect Sci 1:365–375CrossRef Ash T (1989) Dynamic node creation in backpropagation networks. Connect Sci 1:365–375CrossRef
44.
Zurück zum Zitat Setiono R, Hui LCK (1995) Use of a quasi-Newton method in a feedforward neural network construction algorithm. IEEE Trans Neural Netw 6:273–277CrossRef Setiono R, Hui LCK (1995) Use of a quasi-Newton method in a feedforward neural network construction algorithm. IEEE Trans Neural Netw 6:273–277CrossRef
45.
Zurück zum Zitat Lee TC (1991) Neural network systems techniques and applications: algorithms and architectures. Academic Press, New-York Lee TC (1991) Neural network systems techniques and applications: algorithms and architectures. Academic Press, New-York
46.
Zurück zum Zitat Weng W, Khorasani K (1996) An adaptive structural neural network with application to EEG automatic seizure detection. Neural Netw 9:1223–1240CrossRef Weng W, Khorasani K (1996) An adaptive structural neural network with application to EEG automatic seizure detection. Neural Netw 9:1223–1240CrossRef
47.
Zurück zum Zitat Prechelt L (1997) Investigation of the CasCor family of learning algorithms. Neural Netw 10:885–896CrossRef Prechelt L (1997) Investigation of the CasCor family of learning algorithms. Neural Netw 10:885–896CrossRef
48.
Zurück zum Zitat Ma L, Khorasani K (2004) New training strategies for constructive neural networks with application to regression problems. Neural Netw 17:589–609CrossRef Ma L, Khorasani K (2004) New training strategies for constructive neural networks with application to regression problems. Neural Netw 17:589–609CrossRef
49.
Zurück zum Zitat Ma L, Khorasani K (2005) Constructive feedforward neural networks using Hermite polynomial activation functions. IEEE Trans Neural Netw 16:821–833CrossRef Ma L, Khorasani K (2005) Constructive feedforward neural networks using Hermite polynomial activation functions. IEEE Trans Neural Netw 16:821–833CrossRef
50.
Zurück zum Zitat Islam M, Sattar A, Amin F, Yao X, Murase K (2009) A new constructive algorithm for architectural and functional adaptation of artificial neural networks. IEEE Trans Syst Man Cybern Part B 39:1590–1605CrossRef Islam M, Sattar A, Amin F, Yao X, Murase K (2009) A new constructive algorithm for architectural and functional adaptation of artificial neural networks. IEEE Trans Syst Man Cybern Part B 39:1590–1605CrossRef
51.
Zurück zum Zitat Bebis G, Georgiopoulos M (1994) Feed-forward neural networks: why network size is so important. IEEE Potentials 13:27–31CrossRefMATH Bebis G, Georgiopoulos M (1994) Feed-forward neural networks: why network size is so important. IEEE Potentials 13:27–31CrossRefMATH
52.
Zurück zum Zitat Khosravi A, Nahavendi S, Creighton D (2010) A prediction interval-based approach to determine optimal structures of neural network metamodels. Expert Syst Appl 37:2377–2387CrossRef Khosravi A, Nahavendi S, Creighton D (2010) A prediction interval-based approach to determine optimal structures of neural network metamodels. Expert Syst Appl 37:2377–2387CrossRef
55.
Zurück zum Zitat Nowland SJ, Hinton GE (1992) Simplifying neural networks by soft weight-sharing. Neural Comput 4:473–493CrossRef Nowland SJ, Hinton GE (1992) Simplifying neural networks by soft weight-sharing. Neural Comput 4:473–493CrossRef
56.
Zurück zum Zitat Larsen J, Hansen LK (1994) Generalization performance of regularized neural network models. IEEE workshop on neural network for signal processing, pp 42–51 Larsen J, Hansen LK (1994) Generalization performance of regularized neural network models. IEEE workshop on neural network for signal processing, pp 42–51
57.
Zurück zum Zitat Leung CS, Wang HJ, Sum J (2010) On the selection of weight decay parameter for faulty networks. IEEE Trans Neural Netw 21:1232–1244CrossRefMATH Leung CS, Wang HJ, Sum J (2010) On the selection of weight decay parameter for faulty networks. IEEE Trans Neural Netw 21:1232–1244CrossRefMATH
58.
Zurück zum Zitat Wang J, Wu W, Zurada JM (2012) Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty. Neural Netw 33:127–135CrossRefMATH Wang J, Wu W, Zurada JM (2012) Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty. Neural Netw 33:127–135CrossRefMATH
59.
Zurück zum Zitat Setiono R, Leow WK (2000) Pruned neural networks for regression. 6th Pacific RIM international conference on artificial intelligence PRICAI’00, pp 500–509 Setiono R, Leow WK (2000) Pruned neural networks for regression. 6th Pacific RIM international conference on artificial intelligence PRICAI’00, pp 500–509
60.
Zurück zum Zitat Norgaard M (1996) System identification and control with neural networks, Ph.D. dissertation, Institute of Automation, Technical University of Denmark Norgaard M (1996) System identification and control with neural networks, Ph.D. dissertation, Institute of Automation, Technical University of Denmark
61.
Zurück zum Zitat Thomas P, Bloch G (1998) Robust pruning for multilayer perceptrons. IMACS/IEEE multiconference on computational engineering in systems applications CESA’98, pp 17–22 Thomas P, Bloch G (1998) Robust pruning for multilayer perceptrons. IMACS/IEEE multiconference on computational engineering in systems applications CESA’98, pp 17–22
62.
Zurück zum Zitat Leung CS, Wang HJ, Sum J, Chan LW (2001) A pruning method for the recursive least squared algorithm. Neural Netw 14:147–174CrossRef Leung CS, Wang HJ, Sum J, Chan LW (2001) A pruning method for the recursive least squared algorithm. Neural Netw 14:147–174CrossRef
63.
Zurück zum Zitat Tang HS, Xue ST, Chen R, Sato T (2007) \(\text{ H }\infty \) Filtering method for neural network training and pruning. J Comp Civ Eng 21:47–58CrossRef Tang HS, Xue ST, Chen R, Sato T (2007) \(\text{ H }\infty \) Filtering method for neural network training and pruning. J Comp Civ Eng 21:47–58CrossRef
64.
Zurück zum Zitat Ricotti ME, Zio E (1999) Neural network approach to sensitivity and uncertainty analysis. Reliab Eng Syst Saf 64:59–71CrossRef Ricotti ME, Zio E (1999) Neural network approach to sensitivity and uncertainty analysis. Reliab Eng Syst Saf 64:59–71CrossRef
65.
Zurück zum Zitat Zeng X, Yeung DS (2006) Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure. Neurocomputing 69:825–837CrossRef Zeng X, Yeung DS (2006) Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure. Neurocomputing 69:825–837CrossRef
66.
Zurück zum Zitat Chandrasekaran H, Chen HH, Maury MT (2000) Pruning of basis functions in nonlinear approximators. Neurocomputing 34:29–53CrossRefMATH Chandrasekaran H, Chen HH, Maury MT (2000) Pruning of basis functions in nonlinear approximators. Neurocomputing 34:29–53CrossRefMATH
67.
Zurück zum Zitat Lauret P, Fock E, Mara TA (2006) A node pruning algorithm based on a Fourier amplitude sensitivity test method. IEEE Trans Neural Netw 17:273–293CrossRef Lauret P, Fock E, Mara TA (2006) A node pruning algorithm based on a Fourier amplitude sensitivity test method. IEEE Trans Neural Netw 17:273–293CrossRef
68.
Zurück zum Zitat Augasta MG, Kathirvalavakumar T (2011) A novel pruning algorithm for optimizing feedforward neural network of classification problems. Neural Process Lett 34:241–258CrossRef Augasta MG, Kathirvalavakumar T (2011) A novel pruning algorithm for optimizing feedforward neural network of classification problems. Neural Process Lett 34:241–258CrossRef
70.
Zurück zum Zitat Medeiros CMS, Baretto GA (2013) A novel weight pruning method for MLP classifiers on the MAXCORE principle. Neural Comput Appl 22:71–84CrossRef Medeiros CMS, Baretto GA (2013) A novel weight pruning method for MLP classifiers on the MAXCORE principle. Neural Comput Appl 22:71–84CrossRef
71.
Zurück zum Zitat Liang X (2007) Removal of hidden neurons in MLP by orthogonal projection and weight crosswise propagation. Neural Comput Appl 16:57–68CrossRef Liang X (2007) Removal of hidden neurons in MLP by orthogonal projection and weight crosswise propagation. Neural Comput Appl 16:57–68CrossRef
72.
Zurück zum Zitat Rivals I, Personnaz L (2003) Neural network construction and selection in nonlinear modeling. IEEE Trans Neural Netw 14:804–819CrossRef Rivals I, Personnaz L (2003) Neural network construction and selection in nonlinear modeling. IEEE Trans Neural Netw 14:804–819CrossRef
73.
Zurück zum Zitat Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16:57–67CrossRef Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural Netw 16:57–67CrossRef
74.
Zurück zum Zitat Hsu CF (2008) Adaptive growing and pruning neural network control for a linear piezoelectric ceramic motor. Eng Appl Artif Intell 21:1153–1163CrossRef Hsu CF (2008) Adaptive growing and pruning neural network control for a linear piezoelectric ceramic motor. Eng Appl Artif Intell 21:1153–1163CrossRef
75.
Zurück zum Zitat Qi M, Zhang GP (2001) An investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132:666–680CrossRef Qi M, Zhang GP (2001) An investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132:666–680CrossRef
76.
Zurück zum Zitat Egrioglu E, Aladag CH, Gunay S (2008) A new model selection strategy in artificial neural networks. Appl Math Comput 195:591–597MathSciNetCrossRef Egrioglu E, Aladag CH, Gunay S (2008) A new model selection strategy in artificial neural networks. Appl Math Comput 195:591–597MathSciNetCrossRef
77.
Zurück zum Zitat Hand D, Mannila H, Smyth P (2001) Principles of data mining. The MIT press, Cambridge Hand D, Mannila H, Smyth P (2001) Principles of data mining. The MIT press, Cambridge
78.
Zurück zum Zitat Thomas P, Bloch G (1997) Initialization of one hidden layer feed-forward neural networks for non-linear system identification. Proceedings of the 15th IMACS world congress on scientific computation, modelling and applied mathematics WC’97, pp 295–300 Thomas P, Bloch G (1997) Initialization of one hidden layer feed-forward neural networks for non-linear system identification. Proceedings of the 15th IMACS world congress on scientific computation, modelling and applied mathematics WC’97, pp 295–300
79.
Zurück zum Zitat Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proc Int J Conf Neural Netw 3:21–26 Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proc Int J Conf Neural Netw 3:21–26
80.
Zurück zum Zitat Demuth H, Beale P (1994) Neural networks toolbox user’s guide V2.0. The MathWorks Inc., Natick Demuth H, Beale P (1994) Neural networks toolbox user’s guide V2.0. The MathWorks Inc., Natick
81.
82.
Zurück zum Zitat Ruck DW, Rogers SK, Kabrisky M (1990) Feature selection using a multilayer perceptron. Neural Netw Comput 2:40–48 Ruck DW, Rogers SK, Kabrisky M (1990) Feature selection using a multilayer perceptron. Neural Netw Comput 2:40–48
83.
Zurück zum Zitat Tarr G (1991) Multilayered feedforward networks for image segmentation, Ph.D. dissertation, Air Force Inst. Technol. Wright-Patterson AFB Tarr G (1991) Multilayered feedforward networks for image segmentation, Ph.D. dissertation, Air Force Inst. Technol. Wright-Patterson AFB
84.
Zurück zum Zitat Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood CliffsMATH Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood CliffsMATH
85.
Zurück zum Zitat Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS (1988) Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the symposium on computer application and medical care, pp 261–265 Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS (1988) Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the symposium on computer application and medical care, pp 261–265
87.
Zurück zum Zitat Sigillito VG, Wing SP, Hutton LV, Baker KB (1989) Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Tech Digest 10:262–266 Sigillito VG, Wing SP, Hutton LV, Baker KB (1989) Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Tech Digest 10:262–266
88.
Zurück zum Zitat Noyel M, Thomas P, Charpentier P, Thomas A, Beaupretre B (2013) Improving production process performance thanks to neuronal analysis. Proceedings of 11th IFAC workshop on intelligent manufacturing system IMS’13 Noyel M, Thomas P, Charpentier P, Thomas A, Beaupretre B (2013) Improving production process performance thanks to neuronal analysis. Proceedings of 11th IFAC workshop on intelligent manufacturing system IMS’13
89.
Zurück zum Zitat Thomas P, Thomas A (2008) Elagage d’un perceptron multicouches: utilisation de l’analyse de la variance de la sensibilité des paramètres. \(5^{{\grave{\rm e}}{\rm me}}\) Conférence Internationale Francophone d’Automatique CIFA’08 Thomas P, Thomas A (2008) Elagage d’un perceptron multicouches: utilisation de l’analyse de la variance de la sensibilité des paramètres. \(5^{{\grave{\rm e}}{\rm me}}\) Conférence Internationale Francophone d’Automatique CIFA’08
Metadaten
Titel
A New Multilayer Perceptron Pruning Algorithm for Classification and Regression Applications
verfasst von
Philippe Thomas
Marie-Christine Suhner
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2015
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-014-9366-5

Weitere Artikel der Ausgabe 2/2015

Neural Processing Letters 2/2015 Zur Ausgabe

Neuer Inhalt