Skip to main content
Erschienen in: Complex & Intelligent Systems 5/2022

Open Access 14.03.2022 | Original Article

A new neutrosophic model using DUS-Weibull transformation with application

verfasst von: B. M. Nayana, K. K. Anakha, V. M. Chacko, Muhammad Aslam, Mohammed Albassam

Erschienen in: Complex & Intelligent Systems | Ausgabe 5/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a need to comprehend real-world problems that are marked by ambiguity and inflexibility. By taking into account the indeterminacies and inconsistencies, DUS transformation has been taken to Neutrosophic Weibull distribution and DUS-Neutrosophic Weibull distribution is proposed. The probability density function is unimodal and decreasing in nature. Several statistical properties have been studied. The parameters of the proposed distribution are estimated using the maximum likelihood method. The proposed distribution has been validated on a real data set. The estimates are found to be more accurate than the classical distributions.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

In the classical theory of statistics, the data are formed in crisp numbers and analyzed. Since one cannot always compute or offer exact values for statistical traits in real life, it is quite desirable to approximate them. Making the transition from classical to neutrosophic statistics is one technique; depending on the types of indeterminacies, however, numerous approaches may be available. Several advances have been made in recent years to model such inaccurate situations using fuzzy logic and neutrosophy [5, 9, 34, 36, 39, 40]. In addition, according to neutrosophic logic, the parameters take undetermined values which arise while working with statistical data, particularly when working with vague and inaccurate statistical data [5]. Smarandache [33, 36] proposed that a logical statement can be represented in a 3D Neutrosophic Space, where each dimension of the space represents the statement's Truth (T), Falsehood (F), and Indeterminacy (I). Several studies have been conducted using neutrosophic probability distributions to calculate indeterminacy in real-world scenarios, with better results than classical statistics. The concepts of probability distribution in crisp logic were generalized to neutrosophic logic with applications. In terms of neutrosophic statistics, Alhasan and Smarandache [3] proposed the Neutrosophic Weibull distribution. Similarly, distributions like neutrosophic-Poisson, neutrosophic-Uniform, neutrosophic-Exponential are available in the literature. A neutrosophic-Beta distribution for the data is in interval form was developed by Sherwani et al. [32]. Patro and Samarande [28] introduced Neutrosophic Binomial and Neutrosophic Normal distributions. These distributions are provided with an additional room in the relevant area, allowing it to solve more problems that were previously neglected in classical statistics due to indeterminacy and aberrant values [34]. Neutrosophic time series prediction [30] and modelling were also examined in a variety of scenarios, including neutrosophic moving averages, neutrosophic logarithmic models, neutrosophic linear models, and so on, see Guan et al. [13]. Neutrosophic logic has successfully solved a variety of decision-making challenges, such as examining green credit ratings and personnel selection, see Nabeeh et Al. [2426]. Aslam et al. [2, 4, 68] extended the idea of control charts and sampling plans with the presence of indeterminacy and presented various neutrosophic control charts and sampling plans, as well as discussed applying the neutrosophic theory to engineering systems.
The Weibull model is one among the few essential distributions used in reliability theory that are crucial to understanding dependability applications. Many of the analyses using the Weibull model are now available across the engineering literature [18, 22, 27]. Fisher and Tippett [31] proposed a basic theory of the Weibull distribution as one of three types of extreme value distributions. Grabner et al. [12] used the complex combination of Weibull density for wind speed data. The effect of the shape and scale parameters on distribution characteristics such as the reliability, hazard rate etc. is a key feature of the Weibull distribution. The discrete additive Weibull distribution is proposed by Unnikrishnan et al. [31]. An extended version and modified version of Weibull distribution were studied in reliability engineering systems by Yong [39] and Hong [15], respectively. Kundu and Ganguly [20] initiated a cumulative exposure model using Weibull distribution. Wirwicki [38] developed a two-parameter Weibull distribution and studied the strength of ceramic materials like Zirconium dioxide and Wais [37] applied Weibull distribution in the wind sector. Hangal [14] studied the use of generalized Weibull distribution in public health and disease modelling. Quinn and Quinn [29] have reviewed Weibull statistics in reporting strengths of dental materials. Lai et al. [21] prepared a monograph on the Weibull distribution and its extensions that cover practically every aspect.
The paper proposed a new life distribution using the DUS transformation of Neutrosophic Weibull distribution. In the literature of statistics, there are various DUS transformed distributions proposed with some well-known baseline distributions. An approach for proposing new distributions with the DUS transform is found to be effective for modelling. A DUS transformation method has been used to analyze patient information on bladder cancer by Kumar et al. [19]. Kavya and Manoharan [17] introduced the Generalized DUS (GDUS) transformation of Weibull distribution. Deepthi and Chacko [10] studied the properties of DUS-Lomax distribution for survival data analysis. Tripathi et al. [36] studied the inferences for the DUS-Exponential Distribution based on upper record values. Maurya et al. [23] worked with Lindley distribution. AbuJarad et al. [1] developed Bayesian survival analysis on generalized DUS-exponential. Gauthami and Chacko [11] proposed an upside-down failure rate model using DUS-inverse Weibull distribution. Karakaya et al. [16] developed DUS-Kumaraswamy distribution with applications in biomedical and epidemiological research.
The paper is organized into seven sections. The next section describes the probability density (pdf) function, cumulative density function (cdf), and hazard rate function. The statistical properties are studied in the subsequent section followed by which the parameter estimation using the method of maximum likelihood is discussed. Then a simulation study to check the flexibility of the estimates is explained. In the penultimate section, real-life data analysis is presented and a conclusion is given in the final section.

DUS-neutrosophic Weibull

Let \(f\left( x \right)\) and \(F\left( X \right)\) be the pdf and cdf of the baseline distribution respectively, we consider the DUS transformed distribution with pdf
$$ g\left( x \right) = \frac{1}{e - 1}f(x)e^{F(x)} . $$
(1)
The cdf of DUS transformation is given as
$$ G\left( x \right) = \frac{1}{e - 1}\left[ {e^{F\left( x \right)} - 1} \right]. $$
(2)
The hazard rate function is
$$ h\left( x \right) = \frac{1}{{e - e^{F\left( x \right)} }}f\left( x \right)e^{F\left( X \right)} . $$
(3)
Suppose \(I_{N} \in \left( {I_{L} ,I_{U} } \right)\) is an indeterminacy interval, where N is the neutrosophic statistical number and let \(X_{N} = X_{L} + X_{U} I_{N}\) be a random variable following neutrosophic Weibull distribution with scale parameter, \(\alpha\) and shape parameter,\(\beta\). The neutrosophic distribution tends to the classical distribution when \(I_{N} = 0\). Therefore, consider neutrosophic Weibull distribution of a random variable (r.v) \(X_{N}\) with neutrosophic probability distribution function (npdf) as
$$ \begin{aligned} f\left( {x_{N} } \right) & = \left( {\frac{\beta }{{\alpha^{\beta } }}x_{N}^{\beta - 1} e^{{ - \left( {\frac{{x_{N} }}{\alpha }} \right)^{\beta } }} } \right) + \left( {\frac{\beta }{{\alpha^{\beta } }}x_{N}^{\beta - 1} e^{{ - \left( {\frac{{x_{N} }}{\alpha }} \right)^{\beta } }} } \right)I_{N} \\ & = \left( {\frac{\beta }{{\alpha^{\beta } }}x_{N}^{\beta - 1} e^{{ - \left( {\frac{{x_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right) \\ & \quad I_{N} \in \left( {I_{L} ,I_{U} } \right),\;x_{N} \in \left( {x_{L} ,x_{U} } \right) > 0 \\ & \quad x_{N} > 0 ,\alpha > 0, \beta > 0. \\ \end{aligned} $$
(4)
The corresponding neutrosophic cumulative distribution (ncdf) is
$$ F\left( {x_{N} } \right) = \left( {1 - e^{{ - \left( {\frac{{x_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right),\quad x_{N} > 0 ,\alpha > 0, \beta > 0. $$
(5)
Using Eqs. (1), (2), and (3), DUS-neutrosophic Weibull (DUS-NW) distribution is proposed below with two parameters such as \(\alpha\), the scale parameter and \(\beta\), the shape parameter. The npdf and ncdf of the proposed distribution, respectively, are
$$ g\left( {x_{N} } \right) = \left( {\frac{1}{e - 1}\frac{\beta }{{\alpha^{\beta } }}X_{N}^{\beta - 1} e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} e^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} } \right)\left( {1 + I_{N} } \right),\quad x_{N} > 0 ,\alpha > 0, \beta > 0, $$
(6)
and
$$ G\left( {x_{N} } \right) = \frac{1}{e - 1}e^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} ;\quad x_{N} > 0 ,\alpha > 0, \beta > 0. $$
(7)
Also, the hazard rate function is
$$ h_{N} \left( {x_{N} } \right) = \frac{{\left( {\frac{1}{e - 1}\frac{\beta }{{\alpha^{\beta } }}X_{N}^{\beta - 1} e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} e^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} } \right)\left( {1 + I_{N} } \right)}}{{1 - \frac{1}{e - 1}e^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} }};\quad x_{N} { > 0 , }\alpha { > 0, }\beta { > 0}. $$
(8)
From Eq. (4), the DUS-neutrosophic Weibull becomes the DUS-Weibull model when \(I_{N} = 0\) and it is a special case of a generalized DUS-exponential model studied by Kavya and Manoharan [17].

Shape of the density curve

From Fig. 1, it can observe the following properties of the npdf of \(DUS - NW\left( {\alpha ,\beta } \right)\).
(i)
\(\alpha <1, \beta \ge 1\), \(g(x)\) is decreasing
 
(ii)
\(\alpha \ge 1, \beta >1\), \(g(x)\) is unimodal
 
(iii)
\(\alpha <1, \beta <1\), \(g(x)\) is decreasing
 
(iv)
\(\alpha \ge 1, \beta \le 1\), \(g(x)\) is decreasing
 
Figure 2 represents the plot of ncdf of \(DUS - NW\left( {\alpha ,\beta } \right)\).
The plot of hazard function rate is shown in Fig. 3 which has upside-down bathtub shaped and decreasing shapes.

Statistical properties of DUS-neutrosophic Weibull

The main statistical properties like moments, generating functions, quantile function, order statistics and entropy have been studied in this section.

Moments

The \(r^{th}\) moment of the distribution, for \(r \in N,\mu^{\prime}_{r}\) is given as
$$ \begin{aligned} \mu^{\prime}_{r} & = E\left[ {X^{r} } \right] \\ & = \int\limits_{0}^{\infty } {x^{r} \left( {\frac{1}{e - 1}\frac{\beta }{{\alpha^{\beta } }}X_{N}^{\beta - 1} e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} e^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} } \right)\left( {1 + I_{N} } \right){\text{d}}x} . \\ \end{aligned} $$
(9)
Using exponential expansion \(e^{x} = \sum\nolimits_{i = 0}^{\infty } {\frac{{x^{i} }}{i!}}\) and binomial series of expansion \(\left( {1 - y} \right)^{b} = \sum\nolimits_{i = 0}^{\infty } {\left( { - 1} \right)} \left( {\mathop {}\limits_{i}^{b} } \right)y^{i}\), Eq. (9) becomes
$$ \mu^{\prime}_{r} = \left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \frac{{\Gamma \left( {\frac{r}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{r}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right). $$
(10)
The higher order moments can be found similarly. Hence, the mean and variance is given by:
$$ E\left[ {X_{N} } \right] = \left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \frac{{\Gamma \left( {\frac{1}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{1}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right). $$
(11)
$$ \begin{aligned} V\left[ {X_{N} } \right] = & \left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \frac{{\Gamma \left( {\frac{2}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{1}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right) \\ & \quad - \left\{ {\left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \frac{{\Gamma \left( {\frac{2}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{1}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right)} \right\}^{2} . \\ \end{aligned} $$
(12)

Moment generating function

As \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\), the moment generating function is given as
$$ \begin{aligned} M_{{X_{N} }} \left( t \right) &= E\left( {e^{{tX_{N} }} } \right) \\ & = \left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \sum\limits_{k = 0}^{\infty } {\frac{{t^{k} }}{k!}} \frac{{\Gamma \left( {\frac{k}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{k}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right). \\ \end{aligned} $$
(13)

Characteristic function

The characteristic function of \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\) is given as
$$ \begin{aligned} &\phi_{{X_{N} }} \left( t \right)\\ &\quad = E\left[ {e^{{itX_{N} }} } \right] \\ &\quad = \left( {\frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)} \sum\limits_{k = 0}^{\infty } {\frac{{\left( {it} \right)^{k} }}{k!}} \frac{{\Gamma \left( {\frac{k}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{k}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right), \\ &\quad \quad \;{\text{where}}\;i = \sqrt { - 1} . \\ \end{aligned} $$
(14)

Cumulant generating function

The cumulant generating function \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\) is as follows:
$$ \begin{aligned} K_{{X_{N} }} \left( t \right) &= \log \phi_{{X_{N} }} \left( t \right) \\ & = \left( {\log \frac{\beta }{{\left( {e - 1} \right)\alpha^{\beta } }}e^{{\left( {1 + I_{N} } \right)}} \sum\limits_{l = 0}^{\infty } {\sum\limits_{i = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i} }}{l!}\left( {\mathop {}\limits_{i}^{l} } \right)}}}\right. \\ & \quad \times\left.{{\sum\limits_{k = 0}^{\infty } {\frac{{\left( {it} \right)^{k} }}{k!}} \frac{{\Gamma \left( {\frac{k}{\beta } + 1} \right)}}{{\left( {\frac{i + 1}{{\alpha^{\beta } }}} \right)^{{\frac{k}{\beta } + 1}} }}} } \right)\left( {1 + I_{N} } \right). \\ \end{aligned} $$
(15)

Quantile function

The quantile function specifies the value of a random variable so that the probability of the variable being less than or equal to that value equals the specified probability. Suppose is \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\) a neutrosophic random variable with a distribution function \(F\left( {X_{N} } \right)\) such that
$$F\left[{Q}_{{X}_{N}}\left(p\right)\right]=p.$$
Hence, the quantile function is given by
$$ Q\left( p \right) = \left[ { - \alpha^{\beta } \log \left( {1 - \log \left( {\frac{{p\left( {e - 1} \right)}}{{1 + I_{N} }}} \right)} \right)} \right]^{{\frac{1}{\beta }}} . $$
(16)
While setting \(p = \frac{1}{2}\) in Eq. (16), we get the median of \(DUS - NW\left( {\alpha ,\beta } \right)\) as
$$ {\text{Median}} = \left[ { - \alpha^{\beta } \log \left( {1 - \log \left( {\frac{1}{2}\frac{{\left( {e - 1} \right)}}{{1 + I_{N} }}} \right)} \right)} \right]^{{\frac{1}{\beta }}} . $$
(17)

Order statistics

Order statistics are highly pertinent in reliability theory and survival analysis because of the significance of the hazard rate function in these domains. Let \(X_{N1} ,X_{N2} ,...X_{Nn}\) be the n independent and identically distributed (i.i.d) random variable with corresponding order statistics \(X_{N\left( 1 \right)} ,X_{N\left( 2 \right)} ,...X_{N\left( n \right)}\) derived from DUS-NW with density function \(g\left( {x_{N} } \right)\) and distribution function \(G\left( {x_{N} } \right)\). Hence the \(r^{th}\) order statistics for pdf and the cdf is given as
$$ \begin{aligned} g_{r} \left( {x_{N} } \right) & = \frac{n!}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}G^{r - 1} \left( x \right)\left[ {1 - G\left( x \right)} \right]^{n - r} g\left( x \right) \\ & = \frac{n!}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\frac{1}{{\left( {e - 1} \right)^{n} }}\frac{\beta }{{\alpha^{\beta } }}X_{N}^{\beta - 1} e^{{^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} }} \\ & \quad \times\left( {e^{{^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} }} } \right)^{r - 1} \\ & \quad\times\left( {e - e^{{^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)}} }} } \right)^{n - r} \left( {1 + I_{N} } \right) \\ \end{aligned} $$
(18)
$$ \begin{aligned} G_{r} \left( x \right) & = \sum\limits_{j = r}^{n} {\left( {\mathop {}\limits_{j}^{n} } \right)G^{j} \left( x \right)\left[ {1 - G\left( x \right)} \right]^{n - j} } \\ & = \sum\limits_{j = r}^{n} {\left( {\mathop {}\limits_{j}^{n} } \right)\left( {\frac{{e^{{^{{^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{{\alpha_{N} }}} \right)^{{\beta_{N} }} }} } \right)\left( {1 + I_{N} } \right)}} }} }} }}{e - 1}} \right)}^{j} \\ & \quad \times \left( {\frac{{e - e^{{^{{^{{\left( {1 - e^{{ - \left( {\frac{{X_{N} }}{{\alpha_{N} }}} \right)^{{\beta_{N} }} }} } \right)\left( {1 + I_{N} } \right)}} }} }} }}{e - 1}} \right)^{n - j} \\ \end{aligned} $$
(19)

Entropy

The entropy function is used to investigate system reliability and repairability in many engineering systems. Renyi (1961) introduced the quantum form of the classical Rényi entropy. Let \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\) and \(\gamma\) is the order \(\left( {\gamma \ne 1,\gamma \ge 0} \right)\).
$$ \begin{aligned} \tau_{r} \left( \gamma \right) & = \frac{1}{1 - \gamma }\log \left[ {\int {\tau^{\gamma } \left( {x_{N} } \right){\text{d}}x} } \right] \\ & = \left( {\frac{1}{1 - \gamma }\log \left( {\frac{{\beta_{N} }}{{\left( {e - 1} \right)\left( {\alpha_{N} } \right)^{{\beta_{N} }} }}} \right)^{\gamma } \sum\limits_{i = 0}^{\infty } }\right. \\ & \quad \times \left.{ {\sum\limits_{l = 0}^{\infty } {\frac{{\left( { - 1} \right)^{i + l} }}{l!}\gamma^{i} \left( {\mathop {}\limits_{i}^{l} } \right)\frac{{\Gamma \left( {\gamma + \frac{\gamma + 1}{{\beta_{N} }}} \right)}}{{\left( {\frac{l + \gamma }{{\left( {\alpha_{N} } \right)^{{\beta_{N} }} }}} \right)^{{\gamma + \frac{\gamma + 1}{{\beta_{N} }}}} }}} } } \right)\left( {1 + I_{N} } \right), \\ \end{aligned} $$
(20)
where \(\tau_{\gamma } \left( \gamma \right)\) is a non-decreasing function of \(\gamma\).

Estimation of parameters

The method of the maximum likelihood function for parameter estimation is discussed in this section.

Maximum likelihood function

For a given n observation \(x_{N1} ,x_{N2} ,....x_{Nn}\), the likelihood function of \({X}_{N}\sim DUS-NW\left(\alpha ,\beta \right)\) is given as
$$ \begin{aligned} &L\left( {x_{Ni} ,\alpha_{N} ,\beta_{N} } \right) = \coprod\limits_{i = 1}^{n} {f\left( {x_{Ni} ,\alpha_{N} ,\beta_{N} } \right)} \\ & = \left( {\frac{1}{{\left( {e - 1} \right)^{n} }}\frac{{\beta^{n} }}{{\alpha^{n\beta } }}\coprod\limits_{i = 1}^{n} {X_{Ni}^{\beta - 1} } e^{{ - \sum\limits_{i = 1}^{n} {\left( {\frac{{X_{Ni} }}{\alpha }} \right)^{\beta } } }} e^{{\sum\limits_{i = 1}^{n} {\left( {1 - e^{{ - \left( {\frac{{X_{Ni} }}{\alpha }} \right)^{\beta } }} } \right)} }} } \right)\\ & \quad \times\left( {1 + I_{N} } \right). \\ \end{aligned} $$
(21)
The corresponding log-likelihood is obtained as
$$\begin{aligned} &\log L_{{}} \left( {x_{Ni} ,\alpha ,\beta } \right) \\& \quad= \left( \begin{gathered} - n\log (e - 1) + n\log \beta - n\beta \log \alpha \hfill \\ + \left( {\beta - 1} \right)\sum\limits_{i = 1}^{n} {\log X_{Ni} } - \sum\limits_{i = 1}^{n} {\left( {\frac{{X_{Ni} }}{\alpha }} \right)^{\beta } } \hfill \\ + \sum\limits_{i = 1}^{n} {\left( {\left( {1 - e^{{ - \left( {\frac{{X_{Ni} }}{\alpha }} \right)^{\beta } }} } \right)\left( {1 + I_{N} } \right)} \right)} \hfill \\ \end{gathered} \right) \\&\quad + n\log \left( {1 + I_{N} } \right).\end{aligned} $$
(22)
The maximum likelihood estimator (MLE) for the parameters \(\alpha \) and \(\beta \) can be obtained by maximizing the log-likelihood function. The derivatives corresponding to the parameters \(\alpha \) and \(\beta \) are given by
$$ \frac{\partial \log L}{{\partial \alpha }} = \frac{ - n\beta }{\alpha } + \sum\limits_{i = 1}^{n} {\frac{{X_{i}^{\beta } }}{{\alpha^{\beta + 1} }} + \sum\limits_{i = 1}^{n} {e^{{ - \left( {\frac{{X_{i} }}{\alpha }} \right)^{\beta } }} } \frac{{X_{i}^{\beta } }}{{\alpha^{\beta + 1} }}\left( {1 + I_{N} } \right)} , $$
(23)
$$ \begin{aligned}\frac{\partial \log L}{{\partial \beta }} &= \frac{n}{\beta } - n\log \alpha + \sum\limits_{i = 1}^{n} {\log X_{i} - } \sum\limits_{i = 1}^{n} {\left( {\frac{{X_{i} }}{\alpha }} \right)}^{\beta } \\ & \log \left( {\frac{{X_{i} }}{\alpha }} \right) + \sum\limits_{i = 1}^{n} {e^{{ - \left( {\frac{{X_{i} }}{\alpha }} \right)^{\beta } }} } \left( {\frac{{X_{i} }}{\alpha }} \right)^{\beta } \log \frac{{X_{i} }}{\alpha }\left( {1 + I_{N} } \right).\end{aligned} $$
(24)
With the difficulty in the computation of the non-linear equations, Eqs. (23) and (24) can be solved by the inversion method using statistical software R. This yields the ML estimates of \(\alpha \) and \(\beta \) for a chosen initial value.

Simulation studies

To evaluate the performance of MLE of the DUS-NW, an extensive examination has been done. This is compared with the flexibility of the proposed distribution with two indeterminacy measures, i.e. \({I}_{N}=(0.2, 0.5)\) and \({I}_{N}=(0.6, 0.8)\) with classical DUS-Weibull distribution \(({I}_{N}=0)\). Bias and mean square error (MSE) are calculated for different values \(\alpha \) and \(\beta \) for assorted sample sizes \(n=100, 250, 500, 1000\). The results are given below.
The samples are generated using the inversion method for different values of parameters and for two interval measures with \({I}_{N}=(0.2, 0.5)\) and \({I}_{N}=(0.6, 0.8)\). From Tables 1, 2, 3, it can be observed that the Bias and MSE results of DUS-NW (\(\alpha ,\beta )\) are lower compared to classical DUS-Weibull distribution for increasing values of sample size with the different parameter sets for \(\alpha \) and \(\beta \). Here the indeterminacy parameter \({I}_{N}\) plays a crucial role in reducing the error for the estimates.
Table 1
Bias and MSE for estimates (\(\widehat{\alpha },\widehat{\beta }\) ̂) for \({I}_{N}\)= (0.2, 0.5)
\(\alpha \)
\(\beta \)
I
n
Bias
MSE
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
0.02
\(\frac{1}{20}\)
(0.2, 0.5)
100
(0.04583803, 0.02114747)
(0.01716323, 0.02714429)
(0.0021011247, 0.0004472153)
(0.0002945763, 0.0007368123)
   
250
(0.04237012, 0.02010517)
(0.01668007, 0.02682484)
(0.0017952268, 0.0004042180)
(0.0002782246, 0.0007195722)
   
500
(0.04103591, 0.02004485)
(0.01652512, 0.02661857)
(0.0016839455, 0.0004017962)
(0.0002730795, 0.0007085483)
   
1000
(0.04086451, 0.01985459)
(0.01654183, 0.02661421)
(0.001669908, 0.0003942047)
(0.000273632, 0.0007025809)
0.05
\(\frac{1}{12}\)
 
100
(0.08870042, 0.05121487)
(0.06627317, 0.08627648)
(0.007867765, 0.002622963)
(0.004392133, 0.007443631)
   
250
(0.08329835, 0.04852642)
(0.06579972, 0.08456675)
(0.006938616, 0.002354813)
(0.004329604, 0.007151535)
   
500
(0.08201679, 0.04870735)
(0.06565106, 0.08511127)
(0.006726754, 0.002372406)
(0.004310062, 0.007243928)
   
1000
(0.08145313, 0.04847277)
(0.06563771, 0.08458543)
(0.006634612, 0.002349609)
(0.004308309, 0.007154695)
0.07
\(\frac{1}{10}\)
 
100
(0.05991675, 0.01584596)
(0.04276065, 0.06746911)
(0.003590017, 0.0002510946)
(0.001828473, 0.0045520813)
   
250
(0.05306556, 0.01322921)
(0.04248399, 0.06585631)
(0.002815954, 0.0001750119)
(0.001804890, 0.0043370542)
   
500
(0.05144986, 0.01262497)
(0.04217337, 0.06568308)
(0.002647088, 0.0001593898)
(0.001778593, 0.0043142668)
   
1000
(0.05060280, 0.01237193)
(0.04213095, 0.06558151)
(0.002560643, 0.0001530646)
(0.001775017, 0.0043009347)
Table 2
Bias and MSE for estimates (\(\widehat{\alpha },\widehat{\beta }\) ̂) for \({I}_{N}\)= (0.6, 0.8)
\(\alpha \)
\(\beta \)
I
n
Bias
MSE
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
0.02
\(\frac{1}{20}\)
(0.6, 0.8)
100
(0.01305823, − 0.001165214)
(0.02662750, 0.018463959)
(0.0001705173, 1.357723e−06)
(0.0007090240, 3.409178e−04)
   
250
(0.01244600, − 0.001470652
(0.02669726, 0.018007430)
(0.0001549029, 2.162817e−06)
(0.0007127437, 3.242675e−04)
   
500
(0.01210439, − 0.001629951
(0.02662205, 0.017837669)
(0.0001465163, 2.656741e−06)
(0.0007087334, 3.181824e−04)
   
1000
(0.01207787, − 0.00163717)
(0.02671972, 0.01787148)
(0.0001458749, 2.680325e−06)
(0.0007139436, 3.193899e−04)
0.05
\(\frac{1}{12}\)
 
100
(0.006486886, − 0.01736676)
(0.051243841, 0.03176532)
(4.207968e−05, 0.0003016045)
(2.625931e−03, 0.0010090353)
   
250
(0.006090457, − 0.01813765)
(0.050831707, 0.03133854)
(3.709367e−05, 0.0003289745)
(2.583862e−03, 0.0009821038)
   
500
(0.005854779, − 0.01820603)
(0.050774281, 0.03141541)
(3.427844e−05, 0.0003314594)
(2.578028e−03, 0.0009869277)
   
1000
(0.005458527, − 0.01818604)
(0.050293804, 0.03157432)
(2.979552e−05, 0.0003307322)
(2.529467e−03, 0.0009969377)
0.07
\(\frac{1}{10}\)
 
100
(− 0.0007221356, − 0.03078582)
(0.0648579501, 0.03927115)
(5.214798e−07, 0.000947767)
(4.206554e−03, 0.001542223)
   
250
(− 0.002297158, − 0.03143100)
(0.064641784, 0.03834956)
(5.276934e−06, 0.0009879081)
(4.178560e−03, 0.0014706889)
   
500
(− 0.00260835, − 0.03153336)
(0.06436654, 0.03839076)
(6.803487e−06, 0.0009943525)
(4.143051e−03, 0.0014738506)
   
1000
(− 0.002698286, − 0.03152920)
(0.064161893, 0.03837897)
(7.280747e−06, 0.0009940904)
(4.116749e−03, 0.0014729452)
Table 3
Bias and MSE for estimates (\(\widehat{\alpha },\widehat{\beta }\) ̂) for \({I}_{N}\)=0 (Classical DUS-Weibull)
\(\alpha \)
\(\beta \)
I
n
Bias
MSE
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
0.02
\(\frac{1}{20}\)
0
100
0.061809311
0.007603602
3.820391e−03
5.781476e−04
   
250
0.055165753
0.007538561
3.04326e−03
5.68299e−04
   
500
0.053731402
0.007306494
2.887064e−03
5.338485e−04
   
1000
0.052989919
0.007260157
2.807932e−03
5.270988e−04
0.05
\(\frac{1}{12}\)
 
100
0.11626862
0.04872109
0.013518391
0.002373745
   
250
0.10372925
0.04836887
0.010759758
0.002339548
   
500
0.10136056
0.04839876
0.01027396
0.00234244
   
1000
0.09997503
0.04838930
0.009995006
0.002341525
0.07
\(\frac{1}{10}\)
 
100
0.08705233
0.02075045
0.0075781083
0.0004305811
   
250
0.07550608
0.02009084
0.0057011684
0.0004036419
   
500
0.07249187
0.02002445
0.0052550713
0.0004049935
   
1000
0.07035378
0.01999043
0.0049496550
0.0003996175

Application

In this section, the parameters of the proposed distribution is computed using real-life data examples, and the goodness of fit of the proposed distribution is verified using the AIC (Akaike's Information criteria) and BIC (Bayesian Information criteria) values. The real-life neutrosophic data (see Table 4) of population density of some villages in the USA are considered, see Albassam et al. [2].
Table 4
Population density of villages in the USA
Villages
Population density
Villages
Population density
Aranza
[4.13, 4.14]
Charapan
[5.10, 5.12]
Corupo
[4.53, 4.55]
Comachuen
[5.25, 5.27]
San Lorenzo
[4.69, 4.70]
Pichataro
[5.36, 5.38]
Cheranatzicurin
[4.76, 4.78]
Quinceo
[5.94, 5.96]
Nahuatzen
[4.77, 4.79]
Nurio
[6.06, 6.08]
Pomacuaran
[4.96, 4.98]
Turicuaro
[6.19, 6.21]
Servina
[4.97, 4.99]
Urapicho
[6.30, 6.32]
Arantepacua
[5.00, 5.06]
Capacuaro
[7.73, 7.98]
Cocucho
[5.04, 5.06]
  
The MLE approaches are used to determine the parameters of the DUS-NW(\(\alpha ,\beta )\) distribution, and the goodness of fit is used to assess the performance of the models. The estimates are shown in Table 5.
Table 5
Estimation of parameters and goodness of fit the distribution
Distribution
\(\widehat{\alpha }\)
\(\widehat{\beta }\)
AIC
BIC
DUS Neutrosophic Weibull
(7.529830, 7.735726)
(5.012359, 4.707484)
(110.757, 112.7578)
(112.4235, 114.4242)
DUS-Weibull
10.319195
4.5899912
135.5851
137.2515
Neutrosophic Weibull
(5.0565, 6.9361)
(0.05, 0.052)
(124.5214, 125.2397)
(126.1788, 126.9061)
Weibull
7.05
0.05
126.3544
127.3544
In terms of neutrosophy, it can be demonstrated that given results of DUS-NW(\(\alpha ,\beta )\) in terms of imprecision and uncertainty are more accurate and flexible, rather than ignoring imprecision and uncertainty that of DUS-Weibull. As a result, when the data have an interval measure \(({I}_{N})\) and contains some indeterminacy, the recommended DUS-NW((\(\alpha ,\beta )\) distribution has more accurate results than the standard DUS-Weibull distribution. Moreover, DUS-NW(\(\alpha ,\beta )\) has a better-fit and contending results among all other distributions mentioned in the study.

Conclusion

Unlike classical probability distributions, which accept a specific value, neutrosophic probability distributions adopt an intrusive approach to explaining and solving a wide range of real-world situations. This explains why neutrosophic statistics take into account aberrant and imprecise values that classical logic ignores. The Weibull distribution has a wide range of applications in several disciplines such as engineering system, reliability, and sampling plans so that by considering the interval form of data that have imprecisions and arises in many real-life scenarios, thus a DUS-transformation on Neutrosophic Weibull distribution have been proposed. It has been established with several properties of the proposed distribution such as shape, the measure of spread r-th moment, hazard rate function, generating functions, and order statistics. An MLE approach was performed for estimating the parameters. The efficiency of the distribution was investigated by a simulation study. The flexibility of the proposed distribution is driven with an application to a real-life data set with comparison to the classical distributions and Neutrosophic Weibull. It has been concluded that the proposed DUS-NW offers reliable results even by dealing with data's indeterminacy and uncertainty. The study can be further extended to neutrosophic multivariate statistics considering many parameters. Furthermore, future research can be made to plithogenic statistics [35] which is a generalization of classical multivariate statistics.

Acknowledgements

The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality of the paper.

Declarations

Conflict of interest

No conflict of interest regarding the paper.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat AbuJarad MH, Khan AA, AbuJarad ES (2020) Bayesian survival analysis of generalized DUS exponential distribution. Austrian J Stat 49(5):80–95CrossRef AbuJarad MH, Khan AA, AbuJarad ES (2020) Bayesian survival analysis of generalized DUS exponential distribution. Austrian J Stat 49(5):80–95CrossRef
2.
Zurück zum Zitat Albassam M, Khan N, Aslam M (2020) The W/S test for data having neutrosophic numbers: An application to USA village population. Complexity Albassam M, Khan N, Aslam M (2020) The W/S test for data having neutrosophic numbers: An application to USA village population. Complexity
3.
Zurück zum Zitat Alhasan KFH, Smarandache F (2019) Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. Infinite Study Alhasan KFH, Smarandache F (2019) Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. Infinite Study
4.
Zurück zum Zitat Al-Marshadi AH, Shafqat A, Aslam M, Alharbey A (2021) Performance of a new time-truncated control chart for Weibull distribution under uncertainty. Int J Comput Intell Syst 14(1):1256–1262CrossRef Al-Marshadi AH, Shafqat A, Aslam M, Alharbey A (2021) Performance of a new time-truncated control chart for Weibull distribution under uncertainty. Int J Comput Intell Syst 14(1):1256–1262CrossRef
5.
Zurück zum Zitat Ashbacher C (2014) Introduction to Neutrosophic logic. Infinite Study. Ashbacher C (2014) Introduction to Neutrosophic logic. Infinite Study.
6.
Zurück zum Zitat Aslam M, Arif OH (2018) Testing of grouped product for the Weibull distribution using neutrosophic statistics. Symmetry 10(9):403CrossRef Aslam M, Arif OH (2018) Testing of grouped product for the Weibull distribution using neutrosophic statistics. Symmetry 10(9):403CrossRef
7.
Zurück zum Zitat Aslam M (2019) Attribute control chart using the repetitive sampling under neutrosophic system. IEEE Access 7:15367–15374CrossRef Aslam M (2019) Attribute control chart using the repetitive sampling under neutrosophic system. IEEE Access 7:15367–15374CrossRef
8.
Zurück zum Zitat Aslam M, Bantan RA, Khan N (2019) Monitoring the process based on belief statistic for neutrosophic gamma distributed product. Processes 7(4):209CrossRef Aslam M, Bantan RA, Khan N (2019) Monitoring the process based on belief statistic for neutrosophic gamma distributed product. Processes 7(4):209CrossRef
9.
Zurück zum Zitat Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96CrossRef Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96CrossRef
10.
Zurück zum Zitat Deepthi KS, Chacko VM (2020) An Upside-Down Bathtub-Shaped Failure Rate Model Using a DUS Transformation of Lomax Distribution. Stochastic Models in Reliability Engineering. CRC Press, Boca Raton, pp 81–100CrossRef Deepthi KS, Chacko VM (2020) An Upside-Down Bathtub-Shaped Failure Rate Model Using a DUS Transformation of Lomax Distribution. Stochastic Models in Reliability Engineering. CRC Press, Boca Raton, pp 81–100CrossRef
11.
Zurück zum Zitat Gauthami P, Chacko VM (2021) Dus transformation of inverse Weibull distribution: an upside-down failure rate model. Reliab Theory Appl 16(2(62)):58–71 Gauthami P, Chacko VM (2021) Dus transformation of inverse Weibull distribution: an upside-down failure rate model. Reliab Theory Appl 16(2(62)):58–71
12.
Zurück zum Zitat Gräbner J, Jahn J (2017) Optimization of the distribution of wind speeds using convexly combined Weibull densities. Renew Wind Water Solar 4(1):1–8 Gräbner J, Jahn J (2017) Optimization of the distribution of wind speeds using convexly combined Weibull densities. Renew Wind Water Solar 4(1):1–8
13.
Zurück zum Zitat Guan H, Dai Z, Guan S, Zhao A (2019) A neutrosophic forecasting model for time series based on first-order state and information entropy of high-order fluctuation. Entropy 21(5):455CrossRef Guan H, Dai Z, Guan S, Zhao A (2019) A neutrosophic forecasting model for time series based on first-order state and information entropy of high-order fluctuation. Entropy 21(5):455CrossRef
14.
Zurück zum Zitat Hanagal DD (2017) Frailty models in public health. Handbook of statistics, vol 37. Elsevier, Amsterdam, pp 209–247 Hanagal DD (2017) Frailty models in public health. Handbook of statistics, vol 37. Elsevier, Amsterdam, pp 209–247
15.
Zurück zum Zitat HONG J (2009) Modified Weibull distributions in reliability engineering HONG J (2009) Modified Weibull distributions in reliability engineering
16.
Zurück zum Zitat Karakaya K, Kinaci İ, Coşkun KUŞ, Akdoğan Y (2021) On the DUS-Kumaraswamy Distribution. Istatistik J Turk Stat Assoc 13(1):29–38 Karakaya K, Kinaci İ, Coşkun KUŞ, Akdoğan Y (2021) On the DUS-Kumaraswamy Distribution. Istatistik J Turk Stat Assoc 13(1):29–38
17.
Zurück zum Zitat Kavya P, Manoharan M (2020) On a Generalized Lifetime Model Using DUS Transformation. Applied Probability and Stochastic Processes. Springer, Singapore, pp 281–291CrossRef Kavya P, Manoharan M (2020) On a Generalized Lifetime Model Using DUS Transformation. Applied Probability and Stochastic Processes. Springer, Singapore, pp 281–291CrossRef
18.
Zurück zum Zitat Kumar AR, Krishnan V (2017) A Study on System Reliability in Weibull Distribution. Int J Innov Res Electr Electron Instrum Control Eng Kumar AR, Krishnan V (2017) A Study on System Reliability in Weibull Distribution. Int J Innov Res Electr Electron Instrum Control Eng
19.
Zurück zum Zitat Kumar D, Singh U, Singh SK (2015) A method of proposing new distribution and its application to Bladder cancer patients data. J Stat Appl Pro Lett 2(3):235–245 Kumar D, Singh U, Singh SK (2015) A method of proposing new distribution and its application to Bladder cancer patients data. J Stat Appl Pro Lett 2(3):235–245
20.
Zurück zum Zitat Kundu D, Ganguly A (2017) Analysis of step-stress models: existing results and some recent developments. Academic Press, CambridgeMATH Kundu D, Ganguly A (2017) Analysis of step-stress models: existing results and some recent developments. Academic Press, CambridgeMATH
21.
Zurück zum Zitat Lai CD, Murthy DN, Xie M (2006) Weibull distributions and their applications. Springer Handbooks. Springer, New York, pp 63–78 Lai CD, Murthy DN, Xie M (2006) Weibull distributions and their applications. Springer Handbooks. Springer, New York, pp 63–78
22.
23.
Zurück zum Zitat Maurya SK, Kaushik A, Singh SK, Singh U (2017) A new class of exponential transformed Lindley distribution and its application to yarn data. Int J Stat Econ 18(2):135–151 Maurya SK, Kaushik A, Singh SK, Singh U (2017) A new class of exponential transformed Lindley distribution and its application to yarn data. Int J Stat Econ 18(2):135–151
24.
Zurück zum Zitat Nabeeh NA, Smarandache F, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2017) An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. IEEE Access, pp 29734–29744 Nabeeh NA, Smarandache F, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2017) An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. IEEE Access, pp 29734–29744
25.
Zurück zum Zitat Nabeeh NA, Abdel-Basset M, Soliman G (2021) A model for evaluating green credit rating and its impact on sustainability performance. J Clean Prod 280(1):124299CrossRef Nabeeh NA, Abdel-Basset M, Soliman G (2021) A model for evaluating green credit rating and its impact on sustainability performance. J Clean Prod 280(1):124299CrossRef
26.
Zurück zum Zitat Nabeeh NA, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2019) Neutrosophic Multi-Criteria Decision Making Approach for IoT-Based Enterprises. IEEE Access Nabeeh NA, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2019) Neutrosophic Multi-Criteria Decision Making Approach for IoT-Based Enterprises. IEEE Access
27.
Zurück zum Zitat Nair U, Sankaran PG, Balakrishnan N (2018) Reliability modelling and analysis in discrete time. Academic Press, CambridgeMATH Nair U, Sankaran PG, Balakrishnan N (2018) Reliability modelling and analysis in discrete time. Academic Press, CambridgeMATH
28.
Zurück zum Zitat Patro SK, Smarandache F (2016) The Neutrosophic Statistical Distribution, More Problems, More Solutions. Infinite Study Patro SK, Smarandache F (2016) The Neutrosophic Statistical Distribution, More Problems, More Solutions. Infinite Study
29.
Zurück zum Zitat Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26(2):135–147CrossRef Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26(2):135–147CrossRef
30.
Zurück zum Zitat Alhabib R, Salama AA (2020) Using moving averages to pave the neutrosophic time series. Int J Neutrosophic Sci 3(1):14–20 Alhabib R, Salama AA (2020) Using moving averages to pave the neutrosophic time series. Int J Neutrosophic Sci 3(1):14–20
31.
Zurück zum Zitat Fisher RA, Tippett LMC (1928) Limiting forms of frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190CrossRef Fisher RA, Tippett LMC (1928) Limiting forms of frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190CrossRef
32.
Zurück zum Zitat Sherwani RAK, Naeem M, Aslam M, Raza MA, Abid M, Abbas S (2021) Neutrosophic beta distribution with properties and applications. Neutrosophic Sets Syst 41:209–214 Sherwani RAK, Naeem M, Aslam M, Raza MA, Abid M, Abbas S (2021) Neutrosophic beta distribution with properties and applications. Neutrosophic Sets Syst 41:209–214
33.
Zurück zum Zitat Smarandache F (2005) Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math 24(3):287MathSciNetMATH Smarandache F (2005) Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int J Pure Appl Math 24(3):287MathSciNetMATH
34.
Zurück zum Zitat Smarandache F (2014) Introduction to Neutrosophic Statistics. Sitech & Education Publishing, CraiovaMATH Smarandache F (2014) Introduction to Neutrosophic Statistics. Sitech & Education Publishing, CraiovaMATH
35.
Zurück zum Zitat Smarandache F (2021) Plithogenic probability & statistics are generalizations of multivariate probability & statistics. Neutrosophic Sets Syst 43:280–289 Smarandache F (2021) Plithogenic probability & statistics are generalizations of multivariate probability & statistics. Neutrosophic Sets Syst 43:280–289
36.
Zurück zum Zitat Tripathi A, Singh U, Singh SK (2019) Inferences for the dus-exponential distribution based on upper record values. Ann Data Sci 1–17 Tripathi A, Singh U, Singh SK (2019) Inferences for the dus-exponential distribution based on upper record values. Ann Data Sci 1–17
37.
Zurück zum Zitat Wais P (2017) A review of Weibull functions in wind sector. Renew Sustain Energy Rev 70:1099–1107CrossRef Wais P (2017) A review of Weibull functions in wind sector. Renew Sustain Energy Rev 70:1099–1107CrossRef
38.
Zurück zum Zitat Wirwicki M (2018) Two-parametric analysis of the Weibull distribution strength of advanced ceramics materials. In: E3S Web of conferences, Vol. 49. EDP Sciences, p 00130 Wirwicki M (2018) Two-parametric analysis of the Weibull distribution strength of advanced ceramics materials. In: E3S Web of conferences, Vol. 49. EDP Sciences, p 00130
39.
Zurück zum Zitat Yong T (2004) Extended Weibull distributions in reliability engineering Yong T (2004) Extended Weibull distributions in reliability engineering
40.
Zurück zum Zitat Zeina MB, Hatip A (2021) Neutrosophic Random Variables. Neutrosophic Sets Syst 39(1) Zeina MB, Hatip A (2021) Neutrosophic Random Variables. Neutrosophic Sets Syst 39(1)
Metadaten
Titel
A new neutrosophic model using DUS-Weibull transformation with application
verfasst von
B. M. Nayana
K. K. Anakha
V. M. Chacko
Muhammad Aslam
Mohammed Albassam
Publikationsdatum
14.03.2022
Verlag
Springer International Publishing
Erschienen in
Complex & Intelligent Systems / Ausgabe 5/2022
Print ISSN: 2199-4536
Elektronische ISSN: 2198-6053
DOI
https://doi.org/10.1007/s40747-022-00698-6

Weitere Artikel der Ausgabe 5/2022

Complex & Intelligent Systems 5/2022 Zur Ausgabe

Premium Partner