Skip to main content
Erschienen in: Engineering with Computers 2/2017

02.08.2016 | Original Article

A new two-noded curved beam finite element formulation based on exact solution

verfasst von: Ekrem Tufekci, Ugurcan Eroglu, Serhan Aydin Aya

Erschienen in: Engineering with Computers | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite being one of the simplest structural elements, beams are used in many engineering structures. One of the most common methods to analyze and design such structures is the finite element method. Even though many different shape functions for finite beam elements have been offered, still there is a need for a beam formulation that does not suffer from numerical errors, locking problems, and yields accurate results with minimum number of elements. For this reason, in this study, a finite curved beam element formulation is developed based on the exact analytical solution of the governing differential equation of planar curved beams. The axial extension and shear deformation effects are considered in the formulation. Since the stiffness matrix and consistent load vector are obtained from the exact solution, there is no locking problem with the formulation. Many numerical examples are solved to indicate the performance of the proposed element with any loading and boundary conditions. Beams with varying curvature and varying cross section are investigated along with the circular beams with constant cross section. The results show that the element formulation is superior to other elements in the literature with accuracy and wide range of applicability for arbitrarily shaped curved beams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kikuchi F (1975) On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements. Comput Methods Appl Mech Eng 5:253–276MathSciNetCrossRefMATH Kikuchi F (1975) On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements. Comput Methods Appl Mech Eng 5:253–276MathSciNetCrossRefMATH
2.
Zurück zum Zitat Kikuchi F, Tanizawa K (1984) Accuracy and locking-free property of the beam element approximation for arch problems. Comput Struct 19:103–110CrossRefMATH Kikuchi F, Tanizawa K (1984) Accuracy and locking-free property of the beam element approximation for arch problems. Comput Struct 19:103–110CrossRefMATH
3.
Zurück zum Zitat Dawe DJ (1974) Numerical studies using circular arch finite elements. Comput Struct 4:729–740CrossRef Dawe DJ (1974) Numerical studies using circular arch finite elements. Comput Struct 4:729–740CrossRef
4.
Zurück zum Zitat Babu CR, Prathap G (1986) A linear thick curved beam element. Int J Numer Meth Eng 23:1313–1328CrossRefMATH Babu CR, Prathap G (1986) A linear thick curved beam element. Int J Numer Meth Eng 23:1313–1328CrossRefMATH
5.
Zurück zum Zitat Balasubramanian TS, Parthap G (1989) A field consistent higher-order curved beam element for static and dynamic analysis of stepped arches. Comput Struct 33:281–288CrossRefMATH Balasubramanian TS, Parthap G (1989) A field consistent higher-order curved beam element for static and dynamic analysis of stepped arches. Comput Struct 33:281–288CrossRefMATH
6.
Zurück zum Zitat Marquis JP, Wang TM (1989) Stiffness matrix of parabolic beam element. Comput Struct 31:863–870CrossRefMATH Marquis JP, Wang TM (1989) Stiffness matrix of parabolic beam element. Comput Struct 31:863–870CrossRefMATH
7.
Zurück zum Zitat Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39:327–337CrossRefMATH Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39:327–337CrossRefMATH
8.
9.
Zurück zum Zitat Koziey BL, Mirza FA (1994) Consistent curved beam element. Comput Struct 51:643–654CrossRefMATH Koziey BL, Mirza FA (1994) Consistent curved beam element. Comput Struct 51:643–654CrossRefMATH
10.
Zurück zum Zitat Lee PL, Sin HC (1994) Locking free curved beam element based on curvature. Int J Numer Meth Eng 37:989–1007CrossRefMATH Lee PL, Sin HC (1994) Locking free curved beam element based on curvature. Int J Numer Meth Eng 37:989–1007CrossRefMATH
11.
Zurück zum Zitat Choi JK, Lim JK (1995) General curved beam elements based on the assumed strain field. Comput Struct 55:379–386CrossRefMATH Choi JK, Lim JK (1995) General curved beam elements based on the assumed strain field. Comput Struct 55:379–386CrossRefMATH
12.
Zurück zum Zitat Sengupta D, Dasgupta S (1997) Static and dynamic applications of a five noded horizontally curved beam element with shear deformation. Int J Numer Meth Eng 40:1801–1819CrossRef Sengupta D, Dasgupta S (1997) Static and dynamic applications of a five noded horizontally curved beam element with shear deformation. Int J Numer Meth Eng 40:1801–1819CrossRef
13.
Zurück zum Zitat Litewka P, Rakowski J (1997) An efficient curved beam element. Int J Numer Meth Eng 40:2629–2652CrossRefMATH Litewka P, Rakowski J (1997) An efficient curved beam element. Int J Numer Meth Eng 40:2629–2652CrossRefMATH
14.
Zurück zum Zitat Krishnan A, Suresh YJ (1998) A simple cubic linear element for static and free vibration analyses of curved beams. Comput Struct 68:473–489CrossRefMATH Krishnan A, Suresh YJ (1998) A simple cubic linear element for static and free vibration analyses of curved beams. Comput Struct 68:473–489CrossRefMATH
15.
Zurück zum Zitat Kim JG, Kim YY (1998) A new higher order hybrid-mixed curved beam element. Int J Numer Meth Eng 43:925–940CrossRefMATH Kim JG, Kim YY (1998) A new higher order hybrid-mixed curved beam element. Int J Numer Meth Eng 43:925–940CrossRefMATH
16.
Zurück zum Zitat Friedman Z, Kosmatka JB (1998) An accurate two-node finite element for shear deformable curved beams. Int J Numer Meth Eng 41:473–498CrossRefMATH Friedman Z, Kosmatka JB (1998) An accurate two-node finite element for shear deformable curved beams. Int J Numer Meth Eng 41:473–498CrossRefMATH
17.
Zurück zum Zitat Litewka P, Rakowski J (1998) The exact thick arch finite element. Comput Struct 68:369–379CrossRefMATH Litewka P, Rakowski J (1998) The exact thick arch finite element. Comput Struct 68:369–379CrossRefMATH
18.
Zurück zum Zitat Raveendranath P, Singh G, Pradhan B (1999) A two-noded locking free shear deformable curved beam element. Int J Numer Meth Eng 44:265–280CrossRefMATH Raveendranath P, Singh G, Pradhan B (1999) A two-noded locking free shear deformable curved beam element. Int J Numer Meth Eng 44:265–280CrossRefMATH
19.
Zurück zum Zitat Raveendranath P, Singh G, Rao GV (2001) A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int J Numer Meth Eng 51:85–101CrossRefMATH Raveendranath P, Singh G, Rao GV (2001) A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int J Numer Meth Eng 51:85–101CrossRefMATH
20.
Zurück zum Zitat Sheikh AH (2002) New concept to include shear deformation in a curved beam element. J Struct Eng 128:406–410CrossRef Sheikh AH (2002) New concept to include shear deformation in a curved beam element. J Struct Eng 128:406–410CrossRef
21.
Zurück zum Zitat Benlemlih A, Ferricha MEA (2002) A mixed finite element method for arch problem. Appl Math Model 26:17–36CrossRefMATH Benlemlih A, Ferricha MEA (2002) A mixed finite element method for arch problem. Appl Math Model 26:17–36CrossRefMATH
22.
Zurück zum Zitat Kapania RK, Lee JA (2003) Formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations. Comput Mech 30:444–459CrossRefMATH Kapania RK, Lee JA (2003) Formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations. Comput Mech 30:444–459CrossRefMATH
23.
Zurück zum Zitat Wu JS, Chiang LK (2003) Free vibration analysis of arches using curved beam elements. Int J Numer Meth Eng 58:1907–1936CrossRefMATH Wu JS, Chiang LK (2003) Free vibration analysis of arches using curved beam elements. Int J Numer Meth Eng 58:1907–1936CrossRefMATH
24.
Zurück zum Zitat Molari L, Ubertini F (2006) A flexibility-based finite element for linear analysis of arbitrarily curved arches. Int J Numer Meth Eng 65:1333–1353CrossRefMATH Molari L, Ubertini F (2006) A flexibility-based finite element for linear analysis of arbitrarily curved arches. Int J Numer Meth Eng 65:1333–1353CrossRefMATH
25.
Zurück zum Zitat Kim JG, Park YL (2006) Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int J Numer Meth Eng 68:690–706CrossRefMATH Kim JG, Park YL (2006) Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int J Numer Meth Eng 68:690–706CrossRefMATH
26.
Zurück zum Zitat Saffari H, Tabatabaei R (2007) A finite circular arch element based on trigonometric shape functions. Math Prob Eng; ID: 78507 Saffari H, Tabatabaei R (2007) A finite circular arch element based on trigonometric shape functions. Math Prob Eng; ID: 78507
27.
Zurück zum Zitat Cannarozzi M, Molari L (2008) A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int J Numer Meth Eng 74:116–137MathSciNetCrossRefMATH Cannarozzi M, Molari L (2008) A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int J Numer Meth Eng 74:116–137MathSciNetCrossRefMATH
28.
Zurück zum Zitat Saffari H, Fadaee MJ, Tabatabaei R (2008) A new formulation based upon trigonometric function for finite circular arch elements. Mech Eng Sci 222:1371–1380CrossRef Saffari H, Fadaee MJ, Tabatabaei R (2008) A new formulation based upon trigonometric function for finite circular arch elements. Mech Eng Sci 222:1371–1380CrossRef
29.
Zurück zum Zitat Saritas A (2009) Modeling of inelastic behavior of curved members with a mixed formulation beam element. Finite Elem Anal Des 45(5):357–368MathSciNetCrossRef Saritas A (2009) Modeling of inelastic behavior of curved members with a mixed formulation beam element. Finite Elem Anal Des 45(5):357–368MathSciNetCrossRef
30.
Zurück zum Zitat Attarnejad R (2010) Basic displacement functions in analysis of non-prismatic beams. Eng Comput 27:733–745CrossRefMATH Attarnejad R (2010) Basic displacement functions in analysis of non-prismatic beams. Eng Comput 27:733–745CrossRefMATH
31.
Zurück zum Zitat Attarnejad R, Shabba A, Jandaghi Semnani S (2011) Analysis of non-prismatic timoshenko beams using basic displacement functions. Adv Struct Eng 14:319–332CrossRef Attarnejad R, Shabba A, Jandaghi Semnani S (2011) Analysis of non-prismatic timoshenko beams using basic displacement functions. Adv Struct Eng 14:319–332CrossRef
32.
Zurück zum Zitat Shahba A, Attarnejad R, Jandaghi Semnani S, Honorvar Gheitanbaf H (2013) New shape functions for non-uniform curved timoshenko beams with arbitrarily varying curvature using basic displacement functions. Meccanica 48:159–174MathSciNetCrossRefMATH Shahba A, Attarnejad R, Jandaghi Semnani S, Honorvar Gheitanbaf H (2013) New shape functions for non-uniform curved timoshenko beams with arbitrarily varying curvature using basic displacement functions. Meccanica 48:159–174MathSciNetCrossRefMATH
33.
Zurück zum Zitat Ishaquddin M, Raveendranath P, Reddy JN (2012) Flexure and torsion locking phenomena in out-of-plane deformation of Timoshenko curved beam element. Finite Elem Anal Des 51:22–30MathSciNetCrossRef Ishaquddin M, Raveendranath P, Reddy JN (2012) Flexure and torsion locking phenomena in out-of-plane deformation of Timoshenko curved beam element. Finite Elem Anal Des 51:22–30MathSciNetCrossRef
34.
Zurück zum Zitat Ishaquddin M, Raveendranath P, Reddy JN (2013) Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the Timoshenko and Euler-Bernoulli curved beam elements. Finite Elem Anal Des 65:17–31MathSciNetCrossRefMATH Ishaquddin M, Raveendranath P, Reddy JN (2013) Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the Timoshenko and Euler-Bernoulli curved beam elements. Finite Elem Anal Des 65:17–31MathSciNetCrossRefMATH
35.
Zurück zum Zitat Cesarek P, Saje M, Zupan D (2013) Dynamics of flexible beams: finite-element formulation based on interpolation of strain measures. Finite Elem Anal Des 72:47–63MathSciNetCrossRefMATH Cesarek P, Saje M, Zupan D (2013) Dynamics of flexible beams: finite-element formulation based on interpolation of strain measures. Finite Elem Anal Des 72:47–63MathSciNetCrossRefMATH
36.
Zurück zum Zitat Zhang R, Zhong H (2014) Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem Anal Des 87:22–31MathSciNetCrossRef Zhang R, Zhong H (2014) Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem Anal Des 87:22–31MathSciNetCrossRef
37.
Zurück zum Zitat Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef
38.
Zurück zum Zitat Wang L, Zhong H (2014) A traction-based equilibrium finite element free from spurious kinematic modes for linear elasticity problems. Int J Numer Meth Eng 99:763–788MathSciNetCrossRefMATH Wang L, Zhong H (2014) A traction-based equilibrium finite element free from spurious kinematic modes for linear elasticity problems. Int J Numer Meth Eng 99:763–788MathSciNetCrossRefMATH
39.
Zurück zum Zitat Dayyani I, Friswell MI, Saavedra Flores EI (2014) A general super element for a curved beam. Int J Solids Struct 51:2931–2939CrossRef Dayyani I, Friswell MI, Saavedra Flores EI (2014) A general super element for a curved beam. Int J Solids Struct 51:2931–2939CrossRef
40.
Zurück zum Zitat Rajasekaran S (2014) Analysis of curved beams using a new differential transformation based curved beam element. Meccanica 49:863–886MathSciNetCrossRefMATH Rajasekaran S (2014) Analysis of curved beams using a new differential transformation based curved beam element. Meccanica 49:863–886MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef
42.
Zurück zum Zitat Kahrobaiyan MH, Asghari M, Ahmadian MT (2014) A Timoshenko beam element based on the modified couple stress theory. Int J Mech Sci 79:75–83CrossRefMATH Kahrobaiyan MH, Asghari M, Ahmadian MT (2014) A Timoshenko beam element based on the modified couple stress theory. Int J Mech Sci 79:75–83CrossRefMATH
43.
Zurück zum Zitat Almonacid PM (2015) Explicit symplectic momentum-conserving time-stepping scheme for the dynamics of geometrically exact rods. Finite Elem Anal Des 96:11–22MathSciNetCrossRef Almonacid PM (2015) Explicit symplectic momentum-conserving time-stepping scheme for the dynamics of geometrically exact rods. Finite Elem Anal Des 96:11–22MathSciNetCrossRef
44.
Zurück zum Zitat Gimena FN, Gonzaga P, Gimena L (2014) Analytical formulation and solution of arches defined in global coordinates. Eng Struct 60:189–198CrossRefMATH Gimena FN, Gonzaga P, Gimena L (2014) Analytical formulation and solution of arches defined in global coordinates. Eng Struct 60:189–198CrossRefMATH
45.
Zurück zum Zitat Carrera E, Pagani A, Zangallo F (2015) Comparison of various 1D, 2D and 3D FE models for the analysis of thin-walled box with transverse ribs subjected to load factors. Finite Elem Anal Des 95(1):1–11CrossRef Carrera E, Pagani A, Zangallo F (2015) Comparison of various 1D, 2D and 3D FE models for the analysis of thin-walled box with transverse ribs subjected to load factors. Finite Elem Anal Des 95(1):1–11CrossRef
46.
Zurück zum Zitat Gao S, Liang B, Vidal-Salle E (2015) Development of a new 3D beam element with section changes: the first step for large scale textile modelling. Finite Elem Anal Des 104(1):80–88CrossRef Gao S, Liang B, Vidal-Salle E (2015) Development of a new 3D beam element with section changes: the first step for large scale textile modelling. Finite Elem Anal Des 104(1):80–88CrossRef
47.
Zurück zum Zitat Nguyen NT, Kim NI, Lee J (2015) Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams. Finite Elem Anal Des 106(1):65–72CrossRef Nguyen NT, Kim NI, Lee J (2015) Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams. Finite Elem Anal Des 106(1):65–72CrossRef
48.
Zurück zum Zitat Meier C, Popp A, Wall WA (2015) A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Comput Meth Appl Mech Eng 290:314–341MathSciNetCrossRef Meier C, Popp A, Wall WA (2015) A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Comput Meth Appl Mech Eng 290:314–341MathSciNetCrossRef
49.
Zurück zum Zitat Tufekci E, Arpacı A (2006) Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations. Struct Eng Mech 22(2):131–150CrossRef Tufekci E, Arpacı A (2006) Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations. Struct Eng Mech 22(2):131–150CrossRef
50.
Zurück zum Zitat Tufekci E, Yigit OO (2013) In-plane vibration of circular arches with varying cross-sections. Int J Struct Stability Dyn 13:1350003 Tufekci E, Yigit OO (2013) In-plane vibration of circular arches with varying cross-sections. Int J Struct Stability Dyn 13:1350003
Metadaten
Titel
A new two-noded curved beam finite element formulation based on exact solution
verfasst von
Ekrem Tufekci
Ugurcan Eroglu
Serhan Aydin Aya
Publikationsdatum
02.08.2016
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-016-0470-1

Weitere Artikel der Ausgabe 2/2017

Engineering with Computers 2/2017 Zur Ausgabe

Neuer Inhalt