Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 2/2020

18.07.2019

A non-local fractional stress–strain gradient theory

verfasst von: Zaher Rahimi, Ghader Rezazadeh, Wojciech Sumelka

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A generalized non-local stress–strain gradient theory is presented using fractional calculus. The proposed theory includes as a special case: the classical theory; the non-local strain gradient theory; the Eringen non-local theory; the strain gradient theory; the general Eringen non-local theory; and the general strain gradient theory. This new formulation is therefore more comprehensive and more complete to model physical phenomena. Its application has been shown in free vibration, buckling and bending of simply supported (S–S) nano-beams. The non-linear governing equations have been solved by the Galerkin method. Furthermore the effects of different (additional) model parameters like: the length scale parameter; the non-local parameter; and different orders (integer and non-integer) of strain and stress gradients have been shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008) Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008)
Zurück zum Zitat Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Ali Khan, R.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 14(03), 1750029 (2017)MathSciNetMATH Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Ali Khan, R.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 14(03), 1750029 (2017)MathSciNetMATH
Zurück zum Zitat Aydogdu, M.: A general non-local beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41(9), 1651–1655 (2009) Aydogdu, M.: A general non-local beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41(9), 1651–1655 (2009)
Zurück zum Zitat Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)MathSciNetMATH Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)MathSciNetMATH
Zurück zum Zitat Cao, G., Chen, X.: Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B 76(16), 165407 (2007) Cao, G., Chen, X.: Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B 76(16), 165407 (2007)
Zurück zum Zitat Carpinteri, A., Cornetti, P., Sapora, A.: Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49(11), 2551–2569 (2014)MathSciNetMATH Carpinteri, A., Cornetti, P., Sapora, A.: Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49(11), 2551–2569 (2014)MathSciNetMATH
Zurück zum Zitat Challamel, N., Zorica, D., Atanacković, T.M., Spasić, D.T.: On the fractional generalization of Eringenʼs non-local elasticity for wave propagation. Comptes Rendus Mécanique 341(3), 298–303 (2013) Challamel, N., Zorica, D., Atanacković, T.M., Spasić, D.T.: On the fractional generalization of Eringenʼs non-local elasticity for wave propagation. Comptes Rendus Mécanique 341(3), 298–303 (2013)
Zurück zum Zitat D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math Appl. 66(7), 1245–1260 (2013)MathSciNetMATH D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math Appl. 66(7), 1245–1260 (2013)MathSciNetMATH
Zurück zum Zitat da Graça Marcos, M., Duarte, F.B., Machado, J.T.: Fractional dynamics in the trajectory control of redundant manipulators. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1836–1844 (2008) da Graça Marcos, M., Duarte, F.B., Machado, J.T.: Fractional dynamics in the trajectory control of redundant manipulators. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1836–1844 (2008)
Zurück zum Zitat Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54(3), 643–653 (2006) Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54(3), 643–653 (2006)
Zurück zum Zitat Eringen, A.C.: Non-local polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)MATH Eringen, A.C.: Non-local polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)MATH
Zurück zum Zitat Eringen, A.C.: On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983) Eringen, A.C.: On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)
Zurück zum Zitat Failla, G., Santini, A., Zingales, M.: A non-local two-dimensional foundation model. Arch. Appl. Mech. 83(2), 253–272 (2013)MATH Failla, G., Santini, A., Zingales, M.: A non-local two-dimensional foundation model. Arch. Appl. Mech. 83(2), 253–272 (2013)MATH
Zurück zum Zitat Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending analysis of functionally graded nanobeams based on the fractional non-local continuum theory by the variational legendre spectral collocation method. Meccanica 53(4), 1115–1130 (2018)MathSciNetMATH Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending analysis of functionally graded nanobeams based on the fractional non-local continuum theory by the variational legendre spectral collocation method. Meccanica 53(4), 1115–1130 (2018)MathSciNetMATH
Zurück zum Zitat Hilfer, R.: Applications of fractional calculus in physics. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics. World Scientific Publishing, Singapore (2000)MATH Hilfer, R.: Applications of fractional calculus in physics. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics. World Scientific Publishing, Singapore (2000)MATH
Zurück zum Zitat Jing, G.Y., Duan, H., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006) Jing, G.Y., Duan, H., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)
Zurück zum Zitat Khaniki, H.B., Hosseini-Hashemi, S., Nezamabadi, A.: Buckling analysis of nonuniform non-local strain gradient beams using generalized differential quadrature method. Alex. Eng. J. 57(3), 1361–1368 (2018) Khaniki, H.B., Hosseini-Hashemi, S., Nezamabadi, A.: Buckling analysis of nonuniform non-local strain gradient beams using generalized differential quadrature method. Alex. Eng. J. 57(3), 1361–1368 (2018)
Zurück zum Zitat Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36(7), 777–783 (2009)MathSciNetMATH Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36(7), 777–783 (2009)MathSciNetMATH
Zurück zum Zitat Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a non-local strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)MATH Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a non-local strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)MATH
Zurück zum Zitat Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4), 481–494 (2003) Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4), 481–494 (2003)
Zurück zum Zitat Li, L., Li, X., Hu, Y.: Free vibration analysis of non-local strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)MATH Li, L., Li, X., Hu, Y.: Free vibration analysis of non-local strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)MATH
Zurück zum Zitat Liebold, C., Müller, W.H.: Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters. Bull. TICMI 19(1), 45–55 (2015)MathSciNetMATH Liebold, C., Müller, W.H.: Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters. Bull. TICMI 19(1), 45–55 (2015)MathSciNetMATH
Zurück zum Zitat Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order non-local elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetMATH Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order non-local elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetMATH
Zurück zum Zitat Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the non-local strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)MATH Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the non-local strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)MATH
Zurück zum Zitat Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetMATH Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetMATH
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965) Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)
Zurück zum Zitat Olsson, P.A., Melin, S., Persson, C.: Atomistic simulations of tensile and bending properties of single-crystal bcc iron nano-beams. Phys. Rev. B 76(22), 224112 (2007) Olsson, P.A., Melin, S., Persson, C.: Atomistic simulations of tensile and bending properties of single-crystal bcc iron nano-beams. Phys. Rev. B 76(22), 224112 (2007)
Zurück zum Zitat Rahimi, Z., Rezazadeh, G., Sumelka, W., Yang, X.J.: A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear non-local theory. Arch. Mech. 69(6), 413–433 (2017a)MathSciNetMATH Rahimi, Z., Rezazadeh, G., Sumelka, W., Yang, X.J.: A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear non-local theory. Arch. Mech. 69(6), 413–433 (2017a)MathSciNetMATH
Zurück zum Zitat Rahimi, Z., Sumelka, W., Yang, X.J.: Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng. Comput. 34(5), 1754–1770 (2017b) Rahimi, Z., Sumelka, W., Yang, X.J.: Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng. Comput. 34(5), 1754–1770 (2017b)
Zurück zum Zitat Rahimi, Z., Rezazadeh, G., Sadeghian, H.: Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory. Microsyst. Technol. 24(7), 2983–2989 (2018) Rahimi, Z., Rezazadeh, G., Sadeghian, H.: Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory. Microsyst. Technol. 24(7), 2983–2989 (2018)
Zurück zum Zitat Rahimi, Z., Sumelka, W., Shafiei, S.: The analysis of non-linear free vibration of FGM nano-beams based on the conformable fractional non-local model. Technical Sciences, Bulletin of the Polish Academy of Sciences (2018b) Rahimi, Z., Sumelka, W., Shafiei, S.: The analysis of non-linear free vibration of FGM nano-beams based on the conformable fractional non-local model. Technical Sciences, Bulletin of the Polish Academy of Sciences (2018b)
Zurück zum Zitat Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithm 74(1), 223–245 (2017)MathSciNetMATH Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithm 74(1), 223–245 (2017)MathSciNetMATH
Zurück zum Zitat Rashidi, H., Rahimi, Z., Sumelka, W.: Effects of the slip boundary condition on dynamics and pull-in instability of carbon nanotubes conveying fluid. Microfluid. Nanofluid 22(11), 131 (2018) Rashidi, H., Rahimi, Z., Sumelka, W.: Effects of the slip boundary condition on dynamics and pull-in instability of carbon nanotubes conveying fluid. Microfluid. Nanofluid 22(11), 131 (2018)
Zurück zum Zitat Reddy, J.N.: Non-local theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)MATH Reddy, J.N.: Non-local theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)MATH
Zurück zum Zitat Sadeghian, H., Yang, C.K., Goosen, J.F.L., Van Der Drift, E., Bossche, A., French, P.J., Van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94(22), 221903 (2009) Sadeghian, H., Yang, C.K., Goosen, J.F.L., Van Der Drift, E., Bossche, A., French, P.J., Van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94(22), 221903 (2009)
Zurück zum Zitat Sapora, A., Cornetti, P., Chiaia, B., Lenzi, E.K., Evangelista, L.R.: Non-local diffusion in porous media: a spatial fractional approach. J. Eng. Mech. 143(5), D4016007 (2017) Sapora, A., Cornetti, P., Chiaia, B., Lenzi, E.K., Evangelista, L.R.: Non-local diffusion in porous media: a spatial fractional approach. J. Eng. Mech. 143(5), D4016007 (2017)
Zurück zum Zitat Secer, A., Alkan, S., Akinlar, M.A., Bayram, M.: Sinc–Galerkin method for approximate solutions of fractional order boundary value problems. Bound. Value Probl. 2013(1), 1 (2013)MathSciNetMATH Secer, A., Alkan, S., Akinlar, M.A., Bayram, M.: Sinc–Galerkin method for approximate solutions of fractional order boundary value problems. Bound. Value Probl. 2013(1), 1 (2013)MathSciNetMATH
Zurück zum Zitat Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet operational matrix method. Int. J. Appl. Comput. Math. 3(3), 2423–2445 (2017)MathSciNetMATH Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet operational matrix method. Int. J. Appl. Comput. Math. 3(3), 2423–2445 (2017)MathSciNetMATH
Zurück zum Zitat Sumelka, W., Blaszczyk, T., Liebold, C.: Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur. J. Mech. A/Solids 54, 243–251 (2015)MathSciNetMATH Sumelka, W., Blaszczyk, T., Liebold, C.: Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur. J. Mech. A/Solids 54, 243–251 (2015)MathSciNetMATH
Zurück zum Zitat Tarasov, V.E., Aifantis, E.C.: Toward fractional gradient elasticity. J. Mech. Behav. Mater. 23(1–2), 41–46 (2014) Tarasov, V.E., Aifantis, E.C.: Toward fractional gradient elasticity. J. Mech. Behav. Mater. 23(1–2), 41–46 (2014)
Zurück zum Zitat Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197–227 (2015)MathSciNetMATH Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197–227 (2015)MathSciNetMATH
Zurück zum Zitat Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997) Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)
Zurück zum Zitat Yang, X.J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, New York (2012) Yang, X.J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, New York (2012)
Zurück zum Zitat Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21(7), 906 (2006) Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21(7), 906 (2006)
Metadaten
Titel
A non-local fractional stress–strain gradient theory
verfasst von
Zaher Rahimi
Ghader Rezazadeh
Wojciech Sumelka
Publikationsdatum
18.07.2019
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 2/2020
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-019-09469-7

Weitere Artikel der Ausgabe 2/2020

International Journal of Mechanics and Materials in Design 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.