Skip to main content

2015 | OriginalPaper | Buchkapitel

A Note on Real Powers of Time Differentiation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Hilbert space framework for fractional calculus is presented. The utility of the approach is exemplified by applications to abstract ordinary fractional differential equations with or without delay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It should be noted that \(\partial_{0}^{-\alpha}\) is largely independent of the particular choice of ρ∈ ]0,∞[. Indeed, since
$$\mathcal{L}_{\rho}\chi_{_{ ]0,\infty [}} (m_{0} )m_{0}^{\alpha-1}=\frac{1}{\sqrt{2\pi}}\frac{\varGamma (\alpha )}{ ({i}m+\rho )^{\alpha}} $$
we have for \(\varphi\in\mathring{C}_{\infty} (\mathbb {R},H )\)
$$\frac{1}{\varGamma (\alpha )}\chi_{_{ ]0,\infty [}} (m_{0} )m_{0}^{\alpha-1}* \varphi=\partial _{0}^{-\alpha}\varphi $$
and
$$\biggl(\frac{1}{\varGamma (\alpha )}\chi_{_{ ]0,\infty [}} (m_{0} )m_{0}^{\alpha-1}*\varphi \biggr) (t )=\frac{1}{\varGamma (\alpha )}\int _{-\infty}^{t}\frac{1}{ (t-s )^{1-\alpha}}\varphi (s ) ds. $$
From this convolution integral representation we can also read off that \(\partial_{0}^{-\alpha}\) is causal.
 
2
In the limit a→−∞ the spectral fractional derivative is formally recovered:
$$\partial_{0}^{\gamma}={_{-\infty}D_{t}}^{\gamma}={_{-\infty }^{\quad C}D_{t}}^{\gamma}. $$
There is, however, a domain issue here. Whereas \(\partial_{0}^{\gamma}\) is a well-defined closed operator, the operators \({_{-\infty }D_{t}}^{\gamma}, {_{-\infty}^{\quad C}D_{t}}^{\gamma}\) are usually considered in terms of their integral representation leading to slightly different constraints and different choices of underlying spaces.
 
3
Here χ M denotes the characteristic function or indicator function of the set M.
 
4
That is
$$\begin{aligned} \vert f\vert _{\rho,\mathrm{Lip}}:=\inf \bigl\{ & L\in \,]0,\infty[ \bigm| \bigl\vert f (u )-f (v )\bigr\vert _{\rho,-\alpha+\gamma,0}\leq L\vert u-v\vert _{\rho,\gamma,0}\\ &\textit{for all }u,v\in H_{\rho,\gamma}(\mathbb{R},H) \bigr\} . \end{aligned}$$
 
Literatur
1.
Zurück zum Zitat N. Dunford, J.T. Schwartz, Linear Operators. Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space (Wiley Classics Library, New York, 1988). Repr. of the orig., publ. 1963 by John Wiley & Sons Ltd., Wiley/Interscience, New York MATH N. Dunford, J.T. Schwartz, Linear Operators. Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space (Wiley Classics Library, New York, 1988). Repr. of the orig., publ. 1963 by John Wiley & Sons Ltd., Wiley/Interscience, New York MATH
2.
Zurück zum Zitat A. Kalauch, R. Picard, S. Siegmund, S. Trostorff, M. Waurick, A Hilbert Space Perspective on Ordinary Differential Equations with Memory Term. Technical report, TU Dresden (2011), to appear in J. Dyn. Diff. Equ. arXiv:1204.2924v1 (2014) A. Kalauch, R. Picard, S. Siegmund, S. Trostorff, M. Waurick, A Hilbert Space Perspective on Ordinary Differential Equations with Memory Term. Technical report, TU Dresden (2011), to appear in J. Dyn. Diff. Equ. arXiv:​1204.​2924v1 (2014)
3.
Zurück zum Zitat K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993), xiii, 366 p. MATH K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993), xiii, 366 p. MATH
4.
Zurück zum Zitat B. Nolte, S. Kempfle, I. Schäfer, Does a real material behave fractionally? Applications of fractional differential operators to the damped structure borne sound in viscoelastic solids. J. Comput. Acoust. 11(03), 451–489 (2003) CrossRefMathSciNet B. Nolte, S. Kempfle, I. Schäfer, Does a real material behave fractionally? Applications of fractional differential operators to the damped structure borne sound in viscoelastic solids. J. Comput. Acoust. 11(03), 451–489 (2003) CrossRefMathSciNet
5.
Zurück zum Zitat R.H. Picard, Hilbert Space Approach to Some Classical Transforms. Pitman Research Notes in Mathematics Series (Longman, Harlow, 1989) MATH R.H. Picard, Hilbert Space Approach to Some Classical Transforms. Pitman Research Notes in Mathematics Series (Longman, Harlow, 1989) MATH
6.
Zurück zum Zitat R. Picard, On Evolutionary Equations with Fractional Material Laws. To appear in PAMM 2013 R. Picard, On Evolutionary Equations with Fractional Material Laws. To appear in PAMM 2013
7.
Zurück zum Zitat R. Picard, D.F. McGhee, Partial Differential Equations: a Unified Hilbert Space Approach. De Gruyter Expositions in Mathematics, vol. 55 (de Gruyter, Berlin, 2011), 518 p. CrossRef R. Picard, D.F. McGhee, Partial Differential Equations: a Unified Hilbert Space Approach. De Gruyter Expositions in Mathematics, vol. 55 (de Gruyter, Berlin, 2011), 518 p. CrossRef
8.
Zurück zum Zitat R. Picard, S. Trostorff, M. Waurick, On evolutionary equations with material laws containing fractional integrals. Technical Report MATH-AN-05-2013, TU Dresden (2013). Submitted elsewhere. arXiv:1304.7620 R. Picard, S. Trostorff, M. Waurick, On evolutionary equations with material laws containing fractional integrals. Technical Report MATH-AN-05-2013, TU Dresden (2013). Submitted elsewhere. arXiv:​1304.​7620
9.
Zurück zum Zitat I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, in Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, 1999). 340 p. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, in Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, 1999). 340 p.
10.
Zurück zum Zitat E.G.F. Thomas, Vector-valued integration with applications to the operator-valued H ∞ space. IMA J. Math. Control Inf. 14(2), 109–136 (1997) CrossRefMATH E.G.F. Thomas, Vector-valued integration with applications to the operator-valued H space. IMA J. Math. Control Inf. 14(2), 109–136 (1997) CrossRefMATH
Metadaten
Titel
A Note on Real Powers of Time Differentiation
verfasst von
Rainer Picard
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12577-0_29