Skip to main content
Erschienen in: Neural Computing and Applications 1/2017

04.06.2016 | Original Article

A novel approach based on the Gauss-vSVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting

Erschienen in: Neural Computing and Applications | Sonderheft 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The prediction of port throughput is very complicate, and its accuracy is affected by many socio-economic factors, particularly affected by their embedded distributed randomness of these factors and mixed noises produced in the processes of data collection, transformation, and calculation. Firstly, in view of the v-support vector regression hybridized with Gauss function (briefed as Gauss-vSVR model), to well solve the nonlinear and mixed noises, this paper uses this model to simulate the nonlinear evolving system of port throughput series. Then, to look for more suitable parameter combination of this model and take into account that GA still suffers from the problems of trapped into local optima and time-consuming, this study integrates the global chaotic perturbation algorithm by using Cat mapping function and local acceleration search algorithm by employing cloud theory, i.e., abbreviated as chaotic cloud genetic algorithm (CCGA), to well determine the parameter values for an Gauss-vSVR model. Additionally, based on the principal component analysis and correlation analysis method, an input vector decision method (namely IVD) is proposed to identify the final input variables for Gauss-vSVR model. Finally, hybridization of IVD and CCGA with Gauss-vSVR model, namely IGvSVR-CCGA, is proposed for port throughput forecasting. Subsequently, the port throughput data and its associate socio-economic factors of two largest Chinese ports, Shanghai Port and Tianjin Port, are employed as practical examples to test forecast performance. The numerical results indicate that the proposed hybrid forecasting model receives more satisfied forecasting performance than other classical prediction models; in the meanwhile, the CCGA algorithm also obtains higher optimal efficiency than other alternative algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San FranciscoMATH Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San FranciscoMATH
2.
Zurück zum Zitat Sheldon PJ, Var T (1985) Tourism forecasting: a review of empirical research. J Forecast 4:183–195CrossRef Sheldon PJ, Var T (1985) Tourism forecasting: a review of empirical research. J Forecast 4:183–195CrossRef
3.
Zurück zum Zitat Witt SF, Witt CA (1992) Modeling and forecasting demand in tourism. Academic Press, London Witt SF, Witt CA (1992) Modeling and forecasting demand in tourism. Academic Press, London
4.
Zurück zum Zitat Jiang F, Lei K (2009) Grey prediction of port throughput based on GM(1, 1, a) model. Logist Sci Tech 9:68–70 Jiang F, Lei K (2009) Grey prediction of port throughput based on GM(1, 1, a) model. Logist Sci Tech 9:68–70
5.
Zurück zum Zitat Jiang XL, Wu YQ, Shi YJ (2009) Empirical study of an intermix algorithm for forecasting port throughput. China Harb Eng 2:7–11 Jiang XL, Wu YQ, Shi YJ (2009) Empirical study of an intermix algorithm for forecasting port throughput. China Harb Eng 2:7–11
6.
Zurück zum Zitat Chen G, Lei L, Zou H (2012) China’s port throughput of iron ore forecast based on cubic exponential smoothing method. Econ Res Guide 4(191–192):229 Chen G, Lei L, Zou H (2012) China’s port throughput of iron ore forecast based on cubic exponential smoothing method. Econ Res Guide 4(191–192):229
7.
Zurück zum Zitat Zhang WP (2012) Research on combined forecasting model in the container throughput forecasting of Ningbo Port. Bull Sci Technol 28:133–136 Zhang WP (2012) Research on combined forecasting model in the container throughput forecasting of Ningbo Port. Bull Sci Technol 28:133–136
8.
Zurück zum Zitat Shang N, Qin M, Wang Y, Cui Z, Cui Y, Zhu Y (2006) A BP neural network method for short-term traffic flow forecasting on crossroads. Comput Appl Softw 23:33–35 Shang N, Qin M, Wang Y, Cui Z, Cui Y, Zhu Y (2006) A BP neural network method for short-term traffic flow forecasting on crossroads. Comput Appl Softw 23:33–35
9.
Zurück zum Zitat Ye Y, Lu Z (2009) Neural network short-term traffic flow forecasting model based on particle swarm optimization. Comput Eng Des 30:4296–4299 Ye Y, Lu Z (2009) Neural network short-term traffic flow forecasting model based on particle swarm optimization. Comput Eng Des 30:4296–4299
10.
Zurück zum Zitat Liu H, Zhou C, Zhu A, Li L (2009) Multi-population genetic neural network model for short-term traffic flow predictionat intersections. Acta Geod Cartogr Sin 38:364–368 Liu H, Zhou C, Zhu A, Li L (2009) Multi-population genetic neural network model for short-term traffic flow predictionat intersections. Acta Geod Cartogr Sin 38:364–368
11.
Zurück zum Zitat Chen TT, Chen YY (2009) Port cargo throughput forecast based on BP neural network. Jisuanji Yu Xiandaihua 10:4–5 Chen TT, Chen YY (2009) Port cargo throughput forecast based on BP neural network. Jisuanji Yu Xiandaihua 10:4–5
12.
Zurück zum Zitat Liu ML, Zhu MH (2012) The port throughput forecast model based on the BP neural network. J Syst Sci 20:88–91 Liu ML, Zhu MH (2012) The port throughput forecast model based on the BP neural network. J Syst Sci 20:88–91
13.
Zurück zum Zitat Mu JP, Li J, Zhang M (2012) Harbor cargo throughput forecast based on BP neural network and IVD. Tech Method 31:79–82 Mu JP, Li J, Zhang M (2012) Harbor cargo throughput forecast based on BP neural network and IVD. Tech Method 31:79–82
14.
Zurück zum Zitat Suykens JAK (2001) Nonlinear modeling and support vector machines. In: Proceedings of IEEE instrumentation and measurement technology conference, pp 287–294 Suykens JAK (2001) Nonlinear modeling and support vector machines. In: Proceedings of IEEE instrumentation and measurement technology conference, pp 287–294
15.
Zurück zum Zitat Cao J, Cai A (2007) A robust shot transition detection method based on support vector machine in compressed domain. Pattern Recogn Lett 28:1534–1540CrossRef Cao J, Cai A (2007) A robust shot transition detection method based on support vector machine in compressed domain. Pattern Recogn Lett 28:1534–1540CrossRef
16.
Zurück zum Zitat Vapnik V, Golowich S, Smola A (1996) Support vector machine for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287 Vapnik V, Golowich S, Smola A (1996) Support vector machine for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287
17.
Zurück zum Zitat Cao L (2003) Support vector machine experts for time series forecasting. Neurocomputing 51:321–339CrossRef Cao L (2003) Support vector machine experts for time series forecasting. Neurocomputing 51:321–339CrossRef
18.
Zurück zum Zitat Huang W, Nakamori Y, Wang SY (2005) Forecasting stock market movement direction with support vector machine. Comput Oper Res 32:2513–2522CrossRefMATH Huang W, Nakamori Y, Wang SY (2005) Forecasting stock market movement direction with support vector machine. Comput Oper Res 32:2513–2522CrossRefMATH
19.
Zurück zum Zitat Pai PF, Lin CS (2005) A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33:497–505CrossRef Pai PF, Lin CS (2005) A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33:497–505CrossRef
20.
Zurück zum Zitat Pai PF, Lin CS, Hong WC, Chen CT (2006) A hybrid support vector machine regression for exchange rate prediction. Int J Inf Manage Sci 17:19–32MATH Pai PF, Lin CS, Hong WC, Chen CT (2006) A hybrid support vector machine regression for exchange rate prediction. Int J Inf Manage Sci 17:19–32MATH
21.
Zurück zum Zitat Hung WM, Hong WC (2009) Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control Cybern 38:863–891MATH Hung WM, Hong WC (2009) Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control Cybern 38:863–891MATH
22.
Zurück zum Zitat Pai PF, Hong WC (2005) An improved neural network model in forecasting arrivals. Ann Tourism Res 32:1138–1141CrossRef Pai PF, Hong WC (2005) An improved neural network model in forecasting arrivals. Ann Tourism Res 32:1138–1141CrossRef
23.
Zurück zum Zitat Hong WC, Dong Y, Chen LY, Wei SY (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 11:1881–1890CrossRef Hong WC, Dong Y, Chen LY, Wei SY (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 11:1881–1890CrossRef
24.
Zurück zum Zitat Mohandes MA, Halawani TO, Rehman S, Hussain AA (2004) Support vector machines for wind speed prediction. Renew Energy 29:939–947CrossRef Mohandes MA, Halawani TO, Rehman S, Hussain AA (2004) Support vector machines for wind speed prediction. Renew Energy 29:939–947CrossRef
25.
Zurück zum Zitat Hong WC, Pai PF (2007) Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour Manage 21:495–513CrossRef Hong WC, Pai PF (2007) Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour Manage 21:495–513CrossRef
26.
Zurück zum Zitat Pai PF, Hong WC (2007) A recurrent support vector regression model in rainfall forecasting. Hydrol Process 21:819–827CrossRef Pai PF, Hong WC (2007) A recurrent support vector regression model in rainfall forecasting. Hydrol Process 21:819–827CrossRef
27.
Zurück zum Zitat Hong WC (2008) Rainfall forecasting by technological machine learning models. Appl Math Comput 200:41–57MathSciNetMATH Hong WC (2008) Rainfall forecasting by technological machine learning models. Appl Math Comput 200:41–57MathSciNetMATH
28.
Zurück zum Zitat Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74:2096–2107CrossRef Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74:2096–2107CrossRef
29.
Zurück zum Zitat Hong WC, Dong Y, Zheng F, Wei SY (2011) Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl Math Comput 217:6733–6747MathSciNetMATH Hong WC, Dong Y, Zheng F, Wei SY (2011) Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl Math Comput 217:6733–6747MathSciNetMATH
30.
Zurück zum Zitat Hong WC, Dong Y, Zheng F, Lai CY (2011) Forecasting urban traffic flow by SVR with continuous ACO. Appl Math Model 35:1282–1291MathSciNetCrossRefMATH Hong WC, Dong Y, Zheng F, Lai CY (2011) Forecasting urban traffic flow by SVR with continuous ACO. Appl Math Model 35:1282–1291MathSciNetCrossRefMATH
31.
Zurück zum Zitat Pai PF, Hong WC (2005) Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr Power Syst Res 74:417–425CrossRef Pai PF, Hong WC (2005) Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr Power Syst Res 74:417–425CrossRef
32.
Zurück zum Zitat Pai PF, Hong WC (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manag 46:2669–2688CrossRef Pai PF, Hong WC (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manag 46:2669–2688CrossRef
33.
Zurück zum Zitat Hong WC (2009) Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Electr Power Energy Syst 31:409–417CrossRef Hong WC (2009) Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Electr Power Energy Syst 31:409–417CrossRef
34.
Zurück zum Zitat Hong WC (2009) Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers Manag 50:105–117CrossRef Hong WC (2009) Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers Manag 50:105–117CrossRef
35.
Zurück zum Zitat Hong WC (2009) Electric load forecasting by support vector model. Appl Math Model 33:2444–2454CrossRefMATH Hong WC (2009) Electric load forecasting by support vector model. Appl Math Model 33:2444–2454CrossRefMATH
36.
Zurück zum Zitat Hong WC (2010) Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 38:5830–5839CrossRef Hong WC (2010) Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 38:5830–5839CrossRef
37.
Zurück zum Zitat Cheng WZ, Ren FX, Zhou XC (2012) Application of SVM model in the predication of Harbor handling capacity in Jiu-jiang. Logist Eng Manag 34:61–64 Cheng WZ, Ren FX, Zhou XC (2012) Application of SVM model in the predication of Harbor handling capacity in Jiu-jiang. Logist Eng Manag 34:61–64
38.
Zurück zum Zitat Wu Q (2010) A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst Appl 37:2388–2394CrossRef Wu Q (2010) A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst Appl 37:2388–2394CrossRef
39.
Zurück zum Zitat Li MW, Hong WC, Kang HG (2013) Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing 99:230–240CrossRef Li MW, Hong WC, Kang HG (2013) Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing 99:230–240CrossRef
40.
Zurück zum Zitat Cherkassky V, Ma Y (2004) Practical selection of SVR parameters and noise estimation for SVM regression. Neural Netw 17:113–126CrossRefMATH Cherkassky V, Ma Y (2004) Practical selection of SVR parameters and noise estimation for SVM regression. Neural Netw 17:113–126CrossRefMATH
41.
Zurück zum Zitat Friedriehs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neural Comput 64:107–117 Friedriehs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neural Comput 64:107–117
42.
Zurück zum Zitat Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46:131–159CrossRefMATH Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46:131–159CrossRefMATH
43.
Zurück zum Zitat Wang X, Qin C, Gui WH (2005) Parameters election of support vector regression based on hybrid optimization algorithm and its application. J Control Theory Appl 3:372–376 Wang X, Qin C, Gui WH (2005) Parameters election of support vector regression based on hybrid optimization algorithm and its application. J Control Theory Appl 3:372–376
44.
Zurück zum Zitat Chang MW, Lin CH (2005) Leave-one-out bounds for support vector regression model selection. Neural Comput 17:1188–1222CrossRefMATH Chang MW, Lin CH (2005) Leave-one-out bounds for support vector regression model selection. Neural Comput 17:1188–1222CrossRefMATH
45.
Zurück zum Zitat Schölkopf B, Smola AJ, Williamson RC (2000) New support vector algorithms. Neural Comput 12:1207–1245CrossRef Schölkopf B, Smola AJ, Williamson RC (2000) New support vector algorithms. Neural Comput 12:1207–1245CrossRef
46.
Zurück zum Zitat Wu Q, Yan H (2009) Forecasting method based on support vector machine with Gaussian loss function. Comput Integr Manuf Syst 15:306–310 Wu Q, Yan H (2009) Forecasting method based on support vector machine with Gaussian loss function. Comput Integr Manuf Syst 15:306–310
47.
Zurück zum Zitat Yan H, Xu D (2007) An approach to estimating product design time based on fuzzy-support vector machine. IEEE Trans Neural Netw 18:721–731CrossRef Yan H, Xu D (2007) An approach to estimating product design time based on fuzzy-support vector machine. IEEE Trans Neural Netw 18:721–731CrossRef
48.
Zurück zum Zitat Holland J (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor Holland J (1975) Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor
49.
Zurück zum Zitat Busch J, Quirico M, Richter L, Schmidt M, Raatz A, Nyhuis P (2015) A genetic algorithm for a self-learning parameterization of an aerodynamic part feeding system for high-speed assembly. CIRP Ann Manuf Technol 64:5–8CrossRef Busch J, Quirico M, Richter L, Schmidt M, Raatz A, Nyhuis P (2015) A genetic algorithm for a self-learning parameterization of an aerodynamic part feeding system for high-speed assembly. CIRP Ann Manuf Technol 64:5–8CrossRef
50.
Zurück zum Zitat Cachón A, Vázquez RA (2015) Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148:187–197CrossRef Cachón A, Vázquez RA (2015) Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148:187–197CrossRef
51.
Zurück zum Zitat Chi HM, Ersoy OK, Moskowitz H, Ward J (2007) Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms. Eur J Oper Res 180:174–193CrossRefMATH Chi HM, Ersoy OK, Moskowitz H, Ward J (2007) Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms. Eur J Oper Res 180:174–193CrossRefMATH
52.
Zurück zum Zitat Hong WC, Dong Y, Zhang WY, Chen LY, Panigrahi BK (2013) Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. Int J Electr Power Energy Syst 44:604–614CrossRef Hong WC, Dong Y, Zhang WY, Chen LY, Panigrahi BK (2013) Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. Int J Electr Power Energy Syst 44:604–614CrossRef
53.
Zurück zum Zitat Wu Q (2010) The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine. Expert Syst Appl 37:1776–1783CrossRef Wu Q (2010) The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine. Expert Syst Appl 37:1776–1783CrossRef
54.
Zurück zum Zitat Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36:4725–4735CrossRef Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36:4725–4735CrossRef
55.
Zurück zum Zitat Yu F, Xu X (2014) A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 134:102–113CrossRef Yu F, Xu X (2014) A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 134:102–113CrossRef
56.
Zurück zum Zitat Zhao W, Tao T, Zio E (2015) System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Appl Soft Comput 30:792–802CrossRef Zhao W, Tao T, Zio E (2015) System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Appl Soft Comput 30:792–802CrossRef
57.
Zurück zum Zitat Beyki M, Yaghoobi M (2015) Chaotic logic gate: a new approach in set and design by genetic algorithm. Chaos, Solitons Fractals 77:247–252CrossRefMATH Beyki M, Yaghoobi M (2015) Chaotic logic gate: a new approach in set and design by genetic algorithm. Chaos, Solitons Fractals 77:247–252CrossRefMATH
58.
Zurück zum Zitat He Y, Xu Q, Yang S, Liao L (2014) Reservoir flood control operation based on chaotic particle swarm optimization algorithm. Appl Math Model 38:4480–4492MathSciNetCrossRef He Y, Xu Q, Yang S, Liao L (2014) Reservoir flood control operation based on chaotic particle swarm optimization algorithm. Appl Math Model 38:4480–4492MathSciNetCrossRef
59.
Zurück zum Zitat Kouhi S, Keynia F, Ravadanegh SN (2014) A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Int J Electr Power Energy Syst 62:862–867CrossRef Kouhi S, Keynia F, Ravadanegh SN (2014) A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Int J Electr Power Energy Syst 62:862–867CrossRef
60.
Zurück zum Zitat Kuru L, Ozturk A, Kuru E, Kandara O (2015) Int J Electr Power Energy Syst 64:873–879CrossRef Kuru L, Ozturk A, Kuru E, Kandara O (2015) Int J Electr Power Energy Syst 64:873–879CrossRef
61.
Zurück zum Zitat Xiao J, Xu J, Chen Z, Zhang K, Pan L (2009) A hybrid quantum chaotic swarm evolutionary algorithm for DNA encoding. Comput Math Appl 57:1949–1958CrossRef Xiao J, Xu J, Chen Z, Zhang K, Pan L (2009) A hybrid quantum chaotic swarm evolutionary algorithm for DNA encoding. Comput Math Appl 57:1949–1958CrossRef
62.
Zurück zum Zitat Yuan X, Wang P, Yuan Y, Huang Y, Zhang X (2015) A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem. Energy Convers Manag 100:1–9CrossRef Yuan X, Wang P, Yuan Y, Huang Y, Zhang X (2015) A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem. Energy Convers Manag 100:1–9CrossRef
63.
Zurück zum Zitat Zhang J, Lin S, Qiu W (2015) A modified chaotic differential evolution algorithm for short-term optimal hydrothermal scheduling. Int J Electr Power Energy Syst 65:159–168CrossRef Zhang J, Lin S, Qiu W (2015) A modified chaotic differential evolution algorithm for short-term optimal hydrothermal scheduling. Int J Electr Power Energy Syst 65:159–168CrossRef
64.
Zurück zum Zitat Li MW, Kang HG, Zhou PH, Hong WC (2013) Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm. J Syst Eng Electron 24:324–334CrossRef Li MW, Kang HG, Zhou PH, Hong WC (2013) Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm. J Syst Eng Electron 24:324–334CrossRef
65.
Zurück zum Zitat Kao Y, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8:849–857CrossRef Kao Y, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8:849–857CrossRef
66.
Zurück zum Zitat Zhang Y, Shao S, Niyongabo J (2010) Cloud hyper mutation particle swarm optimization algorithm based on cloud model. Pattern Recog Artif Intell 24:91–95 Zhang Y, Shao S, Niyongabo J (2010) Cloud hyper mutation particle swarm optimization algorithm based on cloud model. Pattern Recog Artif Intell 24:91–95
67.
Zurück zum Zitat Li D, Meng H, Shi X (1995) Membership clouds and membership cloud generators. J Comput Res Dev 32:15–20 Li D, Meng H, Shi X (1995) Membership clouds and membership cloud generators. J Comput Res Dev 32:15–20
68.
Zurück zum Zitat Xu JH, Jin H (2010) Study on intrinsic factors of port throughput based on principal component analysis. Port Waterw Eng 1:2–5 Xu JH, Jin H (2010) Study on intrinsic factors of port throughput based on principal component analysis. Port Waterw Eng 1:2–5
69.
Zurück zum Zitat Li DQ, Wang LZ, Wang CF (2007) Prediction of container throughput using a single-parameter Lagrange support vector regression. Port Waterw Eng 5:9–12 Li DQ, Wang LZ, Wang CF (2007) Prediction of container throughput using a single-parameter Lagrange support vector regression. Port Waterw Eng 5:9–12
70.
Zurück zum Zitat Geng J, Li MW, Dong ZH, Liao YS (2015) Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm. Neurocomputing 147:239–250CrossRef Geng J, Li MW, Dong ZH, Liao YS (2015) Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm. Neurocomputing 147:239–250CrossRef
Metadaten
Titel
A novel approach based on the Gauss-vSVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting
Publikationsdatum
04.06.2016
Erschienen in
Neural Computing and Applications / Ausgabe Sonderheft 1/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2396-3

Weitere Artikel der Sonderheft 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe