Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-12/2019

07.05.2019 | ORIGINAL ARTICLE

A novel causation analysis method of machining defects for five-axis machine tools based on error spatial morphology of S-shaped test piece

verfasst von: Qiaohua Wang, Changjun Wu, Jinwei Fan, Guizhong Xie, Liangwen Wang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the acceptance process of newly developed five-axis machine tools (FAMTs), it is urgent for machine tool builders to understand the main causes of machining defects on S-shaped test piece. This paper proposes a novel causation analysis method based on error spatial morphology of S-shaped test piece to decouple the key geometric error parameters causing contour errors of test piece. Firstly, based on multi-body system (MBS) theory, tool axis surface error model of a FAMT is set up. In order to eliminate the effect of theoretical error on contour error of S-shaped test piece, the optimized tool path is planned based on the three-point tangential method. Then, the NC instruction is calculated, and error spatial model is established to characterize contour error of the test piece by considering tool setting position. As a basis, error spatial morphologies of test piece are drawn and the relationships between geometric error parameters and error spatial morphologies are analyzed. In order to decouple the key geometric error parameters affecting contour error of test piece, the causation analysis method of local error and global error are presented. After repairing the local and global key error parameters of the test piece obtained from these two analysis methods respectively, the local machining errors are reduced by more than 80%, and the global machining error is not beyond the tolerance. Finally, the cutting experiments of S-shaped test piece on the FAMT XKAS2525 × 60 are implemented. Error detection results of the cutting test piece are basically the same as that shown in error spatial morphologies of test piece, which verifies the correctness of error spatial model for the test piece. After compensating the global key error parameters obtained from the causation analysis method of global error in CNC system, the detection results of re-cutting test piece under the same conditions indicate the test piece has very few points that are not within the tolerance range, and detection results after compensation and global repaired results are almost similar, which verifies the feasibility and correctness of the proposed analysis method. Therefore, it is obvious that the presented method bridges between geometric characteristics of S-shaped test piece, geometric errors of machine tool, and machining defects of test piece and provides a comprehensive error analysis method in the acceptance and performance testing of FAMTs by using the S-shaped test piece. Thus, this study is of great significance for improving the accuracy evaluation method and enhancing the design accuracy of FAMTs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Leete DL (1961) Automatic compensation of alignment errors in machine tools. Int J Mach Tool Des Res 1(4):293–324CrossRef Leete DL (1961) Automatic compensation of alignment errors in machine tools. Int J Mach Tool Des Res 1(4):293–324CrossRef
2.
Zurück zum Zitat Chen D, Wang H, Pan R, Fan J, Cheng Q (2017) An accurate characterization method to tracing the geometric defect of the machined surface for complex five-axis machine tools. Int J Adv Manuf Technol 93:3395–3408CrossRef Chen D, Wang H, Pan R, Fan J, Cheng Q (2017) An accurate characterization method to tracing the geometric defect of the machined surface for complex five-axis machine tools. Int J Adv Manuf Technol 93:3395–3408CrossRef
3.
Zurück zum Zitat Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98CrossRef Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98CrossRef
4.
Zurück zum Zitat Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33:194–201CrossRef Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33:194–201CrossRef
5.
Zurück zum Zitat NAS 979 (1969) Uniform cutting test – NAS series, metal cutting equipments NAS 979 (1969) Uniform cutting test – NAS series, metal cutting equipments
6.
Zurück zum Zitat NCG-2005 (2005) Test piece for 5-axis-simultaneous milling NCG-2005 (2005) Test piece for 5-axis-simultaneous milling
7.
Zurück zum Zitat Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34:387–398CrossRef Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34:387–398CrossRef
8.
Zurück zum Zitat Song Z, Cui Y (2011) S-shape detection test piece and a detection method for detecting the precision of the numerical control milling machine: US 8061052 B2 Song Z, Cui Y (2011) S-shape detection test piece and a detection method for detecting the precision of the numerical control milling machine: US 8061052 B2
9.
Zurück zum Zitat Zhong L, Bi Q, Huang N, Wang Y (2018) Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. Int J Mach Tools Manuf 125:20–33CrossRef Zhong L, Bi Q, Huang N, Wang Y (2018) Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. Int J Mach Tools Manuf 125:20–33CrossRef
10.
Zurück zum Zitat Guan L, Mo J, Fu M, Wang L (2017) Theoretical error compensation when measuring an S-shaped test piece. Int J Adv Manuf Technol 93:2975–2984CrossRef Guan L, Mo J, Fu M, Wang L (2017) Theoretical error compensation when measuring an S-shaped test piece. Int J Adv Manuf Technol 93:2975–2984CrossRef
11.
Zurück zum Zitat Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124CrossRef Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124CrossRef
12.
Zurück zum Zitat Guan L, Mo J, Fu M, Wang L (2017) An improved positioning method for flank milling of S-shaped test piece. Int J Adv Manuf Technol 92:1349–1364CrossRef Guan L, Mo J, Fu M, Wang L (2017) An improved positioning method for flank milling of S-shaped test piece. Int J Adv Manuf Technol 92:1349–1364CrossRef
13.
Zurück zum Zitat Mou WP, Song ZY, Guo ZP, Tang LM (2012) A machining test to reflect dynamic machining accuracy of five-axis machine tools. Adv Mater Res 622-623:414–419CrossRef Mou WP, Song ZY, Guo ZP, Tang LM (2012) A machining test to reflect dynamic machining accuracy of five-axis machine tools. Adv Mater Res 622-623:414–419CrossRef
14.
Zurück zum Zitat Su Z, Wang L (2015) Latest development of a new standard for the testing of five-axis machine tools using an S-shaped test piece. Proc Inst Mech Eng B J Eng Manuf 229:1221–1228CrossRef Su Z, Wang L (2015) Latest development of a new standard for the testing of five-axis machine tools using an S-shaped test piece. Proc Inst Mech Eng B J Eng Manuf 229:1221–1228CrossRef
15.
Zurück zum Zitat Jiang Z, Ding J, Song Z, Du L, Wang W (2016) Modeling and simulation of surface morphology abnormality of ‘S’ test piece machined by five-axis CNC machine tool. Int J Adv Manuf Technol 85:2745–2759CrossRef Jiang Z, Ding J, Song Z, Du L, Wang W (2016) Modeling and simulation of surface morphology abnormality of ‘S’ test piece machined by five-axis CNC machine tool. Int J Adv Manuf Technol 85:2745–2759CrossRef
16.
Zurück zum Zitat Wang W, Jiang Z, Li Q, Tao W (2015) A new test part to identify performance of five-axis machine tool-part II validation of S part. Int J Adv Manuf Technol 79:739–756CrossRef Wang W, Jiang Z, Li Q, Tao W (2015) A new test part to identify performance of five-axis machine tool-part II validation of S part. Int J Adv Manuf Technol 79:739–756CrossRef
17.
Zurück zum Zitat Wang H, Han F, Xing J, Zuo Y, Ji Y (2018) State prediction model of five-axis machine tools based on the “S” test piece surface finish. Procedia CIRP 71:380–385CrossRef Wang H, Han F, Xing J, Zuo Y, Ji Y (2018) State prediction model of five-axis machine tools based on the “S” test piece surface finish. Procedia CIRP 71:380–385CrossRef
18.
Zurück zum Zitat Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-an update. CIRP Ann 57:660–675CrossRef Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-an update. CIRP Ann 57:660–675CrossRef
19.
Zurück zum Zitat Hong C, Ibaraki S, Matsubara A (2011) Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools. Precis Eng 35:1–11CrossRef Hong C, Ibaraki S, Matsubara A (2011) Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools. Precis Eng 35:1–11CrossRef
20.
Zurück zum Zitat Ramesh R, Mannan MA, Poo A (2000) Error compensation in machine tools - a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256CrossRef Ramesh R, Mannan MA, Poo A (2000) Error compensation in machine tools - a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256CrossRef
21.
Zurück zum Zitat Liu H, Li B, Wang X, Tan G (2011) Characteristics of and measurement methods for geometric errors in CNC machine tools. Int J Adv Manuf Technol 54:195–201CrossRef Liu H, Li B, Wang X, Tan G (2011) Characteristics of and measurement methods for geometric errors in CNC machine tools. Int J Adv Manuf Technol 54:195–201CrossRef
22.
Zurück zum Zitat Aguado S, Samper D, Santolaria J, Jose Aguilar J (2012) Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements. Int J Mach Tools Manuf 53:160–169CrossRef Aguado S, Samper D, Santolaria J, Jose Aguilar J (2012) Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements. Int J Mach Tools Manuf 53:160–169CrossRef
23.
Zurück zum Zitat Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68:2525–2534CrossRef Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68:2525–2534CrossRef
24.
Zurück zum Zitat Li D, Feng P, Zhang J, Yu D, Wu Z (2014) An identification method for key geometric errors of machine tool based on matrix differential and experimental test. Proc Inst Mech Eng C J Mech Eng Sci 228:3141–3155CrossRef Li D, Feng P, Zhang J, Yu D, Wu Z (2014) An identification method for key geometric errors of machine tool based on matrix differential and experimental test. Proc Inst Mech Eng C J Mech Eng Sci 228:3141–3155CrossRef
25.
Zurück zum Zitat Zhao L, Chen H, Yao Y, Diao G (2016) A new approach to improving the machining precision based on dynamic sensitivity analysis. Int J Mach Tools Manuf 102:9–21CrossRef Zhao L, Chen H, Yao Y, Diao G (2016) A new approach to improving the machining precision based on dynamic sensitivity analysis. Int J Mach Tools Manuf 102:9–21CrossRef
26.
Zurück zum Zitat Liu X, Zhang X, Fang F, Liu S (2016) Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. Int J Mach Tools Manuf 105:45–57CrossRef Liu X, Zhang X, Fang F, Liu S (2016) Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. Int J Mach Tools Manuf 105:45–57CrossRef
27.
Zurück zum Zitat Fan J, Tang Y, Chen D, Wu C (2017) A geometric error tracing method based on the Monte Carlo theory of the five-axis gantry machining center. Adv Mech Eng 9:1–14 Fan J, Tang Y, Chen D, Wu C (2017) A geometric error tracing method based on the Monte Carlo theory of the five-axis gantry machining center. Adv Mech Eng 9:1–14
28.
Zurück zum Zitat Guo Q, Sun Y, Guo D (2011) Analytical modeling of geometric errors induced by cutter runout and tool path optimization for five-axis flank machining. SCIENCE CHINA Technol Sci 54:3180–3190CrossRefMATH Guo Q, Sun Y, Guo D (2011) Analytical modeling of geometric errors induced by cutter runout and tool path optimization for five-axis flank machining. SCIENCE CHINA Technol Sci 54:3180–3190CrossRefMATH
29.
Zurück zum Zitat Senatore J, Landon Y, Rubio W (2008) Analytical estimation of error in flank milling of ruled surfaces. Comput Aided Des 40:595–603CrossRef Senatore J, Landon Y, Rubio W (2008) Analytical estimation of error in flank milling of ruled surfaces. Comput Aided Des 40:595–603CrossRef
30.
Zurück zum Zitat Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95:3413–3435CrossRef Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95:3413–3435CrossRef
31.
Zurück zum Zitat Chen D, Dong L, Bian Y, Fan J (2015) Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. Int J Mach Tools Manuf 94:74–87 Chen D, Dong L, Bian Y, Fan J (2015) Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. Int J Mach Tools Manuf 94:74–87
Metadaten
Titel
A novel causation analysis method of machining defects for five-axis machine tools based on error spatial morphology of S-shaped test piece
verfasst von
Qiaohua Wang
Changjun Wu
Jinwei Fan
Guizhong Xie
Liangwen Wang
Publikationsdatum
07.05.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-12/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03777-0

Weitere Artikel der Ausgabe 9-12/2019

The International Journal of Advanced Manufacturing Technology 9-12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.