Skip to main content
Erschienen in: Wireless Personal Communications 2/2019

03.04.2019

A Novel Energy Harvesting: Cluster Head Rotation Scheme (EH-CHRS) for Green Wireless Sensor Network (GWSN)

verfasst von: V. Mahima, A. Chitra

Erschienen in: Wireless Personal Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Network (WSN) serves as a better solution for remote unmanned monitoring situations. The harvesting capabilities in Green Wireless Sensor Network (GWSN) do not satisfy the real energy demand and it greatly determines the lifetime of the GWSN. The (a) excess harvesting leads energy overflow and (b) meager energy harvesting leads unavailability in monitoring of the event. The energy management favoring continuous monitoring in WSN is the problem addressed in this article. This article concentrates in creating a solution for energy outage and energy overflow problem in GWSN. The residual energy of the buffer and current harvesting rate is considered to create an energy efficient routing algorithm for GWSN. The energy arrival is poisson in nature, the energy harvesting, storing and utilization in the battery is realized as a Double Chain Markov Model. The algorithm proves to be energy efficient and delivers high throughput when compared with Stable Election Protocol (SEP) algorithm. The proposed Energy Harvesting—Cluster Head Rotation Scheme (EH-CHRS) algorithm minimizes the energy overflow and energy outage in the network by optimal Cluster Head (CH) selection and CH rotation method. The algorithm is analyzed with different harvesting rate λ = 1 and 2. The EH-CHRS algorithm also promotes reduced drop packet when compared to the SEP protocol. The algorithm also resist energy hole problem and HOT SPOT problem in the network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transaction on Wireless Communication, 6(4), 1308–1319.CrossRef Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transaction on Wireless Communication, 6(4), 1308–1319.CrossRef
2.
Zurück zum Zitat Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications., 61(7), 2988–3001.CrossRef Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications., 61(7), 2988–3001.CrossRef
3.
Zurück zum Zitat Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predictions. IEEE Sensors Journal., 12(9), 2891–2897.CrossRef Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predictions. IEEE Sensors Journal., 12(9), 2891–2897.CrossRef
4.
Zurück zum Zitat Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors J, 11(3), 565–573.CrossRef Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors J, 11(3), 565–573.CrossRef
5.
Zurück zum Zitat Kanagachidambaresan, G. R., & Chitra, A. (2014). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personnel Communications., 78(2), 247–260. Kanagachidambaresan, G. R., & Chitra, A. (2014). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personnel Communications., 78(2), 247–260.
6.
Zurück zum Zitat Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.CrossRef
7.
Zurück zum Zitat Kanagachidambaresan, G. R., & SarmaDhulipala, V. R. (2014). Cardiac care assistance using self configured sensor network—a remote patient monitoring system. Journal of The Institution of Engineers Series B, 95(2), 101–106.CrossRef Kanagachidambaresan, G. R., & SarmaDhulipala, V. R. (2014). Cardiac care assistance using self configured sensor network—a remote patient monitoring system. Journal of The Institution of Engineers Series B, 95(2), 101–106.CrossRef
8.
Zurück zum Zitat Kanagachidambaresan, G. R., SarmaDhulipala, V. R., Vanusha, D., & Udhaya, M. S. (2011). Matlab based modeling of body sensor network using ZigBee protocol. CIIT, 2011, 773–776. Kanagachidambaresan, G. R., SarmaDhulipala, V. R., Vanusha, D., & Udhaya, M. S. (2011). Matlab based modeling of body sensor network using ZigBee protocol. CIIT, 2011, 773–776.
9.
Zurück zum Zitat Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transaction on Wireless Communication, 5(3), 531–539.CrossRef Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transaction on Wireless Communication, 5(3), 531–539.CrossRef
10.
Zurück zum Zitat Rajesh, R., Sharma, V., & Viswanath, P. (2014). Capacity of Gaussian channels with energy harvesting and processing cost. IEEE Transactions on Information Theory, 60(5), 2563–2575.MathSciNetCrossRefMATH Rajesh, R., Sharma, V., & Viswanath, P. (2014). Capacity of Gaussian channels with energy harvesting and processing cost. IEEE Transactions on Information Theory, 60(5), 2563–2575.MathSciNetCrossRefMATH
11.
Zurück zum Zitat Du, E., Yang, Q., Shen, Z., & Kwak, K. S. (2017). Distortion minimization in wireless sensor networks with energy harvesting. IEEE Communications Letters, 21(6), 1393–1396.CrossRef Du, E., Yang, Q., Shen, Z., & Kwak, K. S. (2017). Distortion minimization in wireless sensor networks with energy harvesting. IEEE Communications Letters, 21(6), 1393–1396.CrossRef
12.
Zurück zum Zitat Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831–843.CrossRef Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831–843.CrossRef
13.
Zurück zum Zitat Akhtar, F., & Rehmani, M. H. (2017). Energy harvesting for self-sustainable wireless body area networks. IT Professional, 19(2), 32–40.CrossRef Akhtar, F., & Rehmani, M. H. (2017). Energy harvesting for self-sustainable wireless body area networks. IT Professional, 19(2), 32–40.CrossRef
14.
Zurück zum Zitat Das, K., Zand, P., & Havinga, P. (2017). Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Computing, 21(1), 1089–7801.CrossRef Das, K., Zand, P., & Havinga, P. (2017). Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Computing, 21(1), 1089–7801.CrossRef
15.
Zurück zum Zitat Mosavat-Jahromi, H., Maham, B., & Tsiftsis, T. A. (2017). Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 21(3), 732–742.CrossRef Mosavat-Jahromi, H., Maham, B., & Tsiftsis, T. A. (2017). Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 21(3), 732–742.CrossRef
16.
Zurück zum Zitat Ashraf, M., Shahid, A., Jang, J. W., & Lee, K.-G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 2169–3536. Ashraf, M., Shahid, A., Jang, J. W., & Lee, K.-G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 2169–3536.
17.
Zurück zum Zitat Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors Journal, 17(7), 2165–2173.CrossRef Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors Journal, 17(7), 2165–2173.CrossRef
18.
Zurück zum Zitat Kong, H.-B., Wang, P., Niyato, D., & Cheng, Y. (2017). Modeling and analysis of wireless sensor networks with/without energy harvesting using Ginibre point processes. IEEE Transactions on Wireless Communications, 16(6), 3700–3713.CrossRef Kong, H.-B., Wang, P., Niyato, D., & Cheng, Y. (2017). Modeling and analysis of wireless sensor networks with/without energy harvesting using Ginibre point processes. IEEE Transactions on Wireless Communications, 16(6), 3700–3713.CrossRef
19.
Zurück zum Zitat Li, W., Bassi, F., Dardari, D., Kieffer, M., & Pasolini, G. (2016). Defective sensor identication for WSNs involving generic local outlier detection tests. IEEE Transaction Signal Information processing Networks, 2, 29–48.CrossRef Li, W., Bassi, F., Dardari, D., Kieffer, M., & Pasolini, G. (2016). Defective sensor identication for WSNs involving generic local outlier detection tests. IEEE Transaction Signal Information processing Networks, 2, 29–48.CrossRef
20.
Zurück zum Zitat Flint, I., Lu, X., Privault, N., Niyato, D., & Wang, P. (2015). Performance analysis of ambient RF energy harvesting with repulsive point process modeling. IEEE Transaction on Wireless Communication, 14, 5402–5416.CrossRef Flint, I., Lu, X., Privault, N., Niyato, D., & Wang, P. (2015). Performance analysis of ambient RF energy harvesting with repulsive point process modeling. IEEE Transaction on Wireless Communication, 14, 5402–5416.CrossRef
21.
Zurück zum Zitat Sakr, A. H., & Hossain, E. (2014).Analysis of multi-tier uplink cellular networks with energy harvesting and flexible cell association. in Procedding of IEEE Global Communication Conference (Globecom), Austin( pp. 4525–4530). Sakr, A. H., & Hossain, E. (2014).Analysis of multi-tier uplink cellular networks with energy harvesting and flexible cell association. in Procedding of IEEE Global Communication Conference (Globecom), Austin( pp. 4525–4530).
22.
Zurück zum Zitat Murthy, C. R. (2009). Power management and data rate maximization in wireless energy harvesting sensors. International Journal of Wireless Information Networks, 16, 102–117.CrossRef Murthy, C. R. (2009). Power management and data rate maximization in wireless energy harvesting sensors. International Journal of Wireless Information Networks, 16, 102–117.CrossRef
23.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transaction Wireless Communication, 1, 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transaction Wireless Communication, 1, 660–670.CrossRef
24.
Zurück zum Zitat Che, Y. L., Duan, L., & Zhang, R. (2015). Spatial throughput maximization of wireless powered communication networks. IEEE Journal on Selected Areas in Communication, 33, 1534–1548. Che, Y. L., Duan, L., & Zhang, R. (2015). Spatial throughput maximization of wireless powered communication networks. IEEE Journal on Selected Areas in Communication, 33, 1534–1548.
25.
Zurück zum Zitat Agarwal, A., & Jagannatham, A. K. (2014). Distributed estimation in homogenous Poisson wireless sensor networks. IEEE Wireless Commun. Letters, 3, 90–93.CrossRef Agarwal, A., & Jagannatham, A. K. (2014). Distributed estimation in homogenous Poisson wireless sensor networks. IEEE Wireless Commun. Letters, 3, 90–93.CrossRef
26.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Transaction on Nano Technology, 11(3), 570–580.CrossRef Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Transaction on Nano Technology, 11(3), 570–580.CrossRef
27.
Zurück zum Zitat Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting- based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRef Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting- based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRef
28.
Zurück zum Zitat Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance and energy aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34(12), 3798–3813.CrossRef Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance and energy aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34(12), 3798–3813.CrossRef
30.
Zurück zum Zitat Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: zonal-stable election protocol for wireless sensor networks. Journal of Basic and Applied Scientific Research (JBASR). Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: zonal-stable election protocol for wireless sensor networks. Journal of Basic and Applied Scientific Research (JBASR).
Metadaten
Titel
A Novel Energy Harvesting: Cluster Head Rotation Scheme (EH-CHRS) for Green Wireless Sensor Network (GWSN)
verfasst von
V. Mahima
A. Chitra
Publikationsdatum
03.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06302-4

Weitere Artikel der Ausgabe 2/2019

Wireless Personal Communications 2/2019 Zur Ausgabe

Neuer Inhalt