Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

16.03.2019 | Original Article

A novel feature extraction method for machine learning based on surface electromyography from healthy brain

Zeitschrift:
Neural Computing and Applications
Autoren:
Gongfa Li, Jiahan Li, Zhaojie Ju, Ying Sun, Jianyi Kong
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Feature extraction is one of most important steps in the control of multifunctional prosthesis based on surface electromyography (sEMG) pattern recognition. In this paper, a new sEMG feature extraction method based on muscle active region is proposed. This paper designs an experiment to classify four hand motions using different features. This experiment is used to prove that new features have better classification performance. The experimental results show that the new feature, active muscle regions (AMR), has better classification performance than other traditional features, mean absolute value (MAV), waveform length (WL), zero crossing (ZC) and slope sign changes (SSC). The average classification errors of AMR, MAV, WL, ZC and SSC are 13%, 19%, 26%, 24% and 22%, respectively. The new EMG features are based on the mapping relationship between hand movements and forearm active muscle regions. This mapping relationship has been confirmed in medicine. We obtain the active muscle regions data from the original EMG signal by the new feature extraction algorithm. The results obtained from this algorithm can well represent hand motions. On the other hand, the new feature vector size is much smaller than other features. The new feature can narrow the computational cost. This proves that the AMR can improve sEMG pattern recognition accuracy rate.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise