Skip to main content

2024 | OriginalPaper | Buchkapitel

A Novel Framework for Adaptive Quadruped Robot Locomotion Learning in Uncertain Environments

verfasst von : Mengyuan Li, Bin Guo, Kaixing Zhao, Ruonan Xu, Sicong Liu, Sitong Mao, Shunbo Zhou, Qiaobo Xu, Zhiwen Yu

Erschienen in: Green, Pervasive, and Cloud Computing

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning diverse and flexible locomotion strategies in uncertain environments has been a longstanding challenge for quadruped robots. Although recent progress in domain randomization has partially tackled this difficulty by training policies on a wide range of potential factors, there is still a great need for improving efficiency. In this paper, we propose a novel framework for adaptive quadruped robot locomotion learning in uncertain environments. Our method is based on data-efficient reinforcement learning and learns simulation parameters iteratively. We also propose a novel Sampling-Interval-Adaptive Identification (SIAI) strategy that uses historical parameters to optimize sampling distribution and then improve identification accuracy. Final evaluations based on multiple robotic locomotion tasks showed superiority of our method over baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Raibert, M.H., Tello, E.R.: Legged robots that balance. IEEE Expert (1986) Raibert, M.H., Tello, E.R.: Legged robots that balance. IEEE Expert (1986)
2.
Zurück zum Zitat Katz, B., Carlo, J.D., Kim, S.: Mini cheetah: a platform for pushing the limits of dynamic quadruped control. In: 2019 International Conference on Robotics and Automation (ICRA) (2019) Katz, B., Carlo, J.D., Kim, S.: Mini cheetah: a platform for pushing the limits of dynamic quadruped control. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)
3.
Zurück zum Zitat Carlo, J.D., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) Carlo, J.D., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)
4.
Zurück zum Zitat Ding, Y., Pandala, A., Li, C., Shin, Y.H., Park, H.W.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. (2020) Ding, Y., Pandala, A., Li, C., Shin, Y.H., Park, H.W.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. (2020)
5.
Zurück zum Zitat Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: Conference on Robot Learning (2018) Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: Conference on Robot Learning (2018)
6.
Zurück zum Zitat Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. (2020) Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. (2020)
7.
Zurück zum Zitat Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. (2022) Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. (2022)
8.
Zurück zum Zitat Yang, Y., Caluwaerts, K., Iscen, A., Zhang, T., Tan, J., Sindhwani, V.: Data efficient reinforcement learning for legged robots. In: Conference on Robot Learning (2020) Yang, Y., Caluwaerts, K., Iscen, A., Zhang, T., Tan, J., Sindhwani, V.: Data efficient reinforcement learning for legged robots. In: Conference on Robot Learning (2020)
9.
Zurück zum Zitat Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning. Robot. Sci. Syst. (2019) Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning. Robot. Sci. Syst. (2019)
10.
Zurück zum Zitat Tan, J., Zhang, T., Coumans, E., et al.: Sim-to-real: Learning agile locomotion for quadruped robots. Robot. Sci. Syst. (2018) Tan, J., Zhang, T., Coumans, E., et al.: Sim-to-real: Learning agile locomotion for quadruped robots. Robot. Sci. Syst. (2018)
11.
Zurück zum Zitat Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, 4–6 June 1995, Proceedings, vol. 3 (1995) Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, 4–6 June 1995, Proceedings, vol. 3 (1995)
12.
Zurück zum Zitat Koos, S., Mouret, J.-B., Doncieux, S.: Crossing the reality gap in evolutionary robotics by promoting transferable controllers. in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010) Koos, S., Mouret, J.-B., Doncieux, S.: Crossing the reality gap in evolutionary robotics by promoting transferable controllers. in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010)
13.
Zurück zum Zitat Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)
14.
Zurück zum Zitat Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018) Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)
15.
Zurück zum Zitat Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk faster: from the real world to simulation and back. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (2013) Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk faster: from the real world to simulation and back. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (2013)
16.
Zurück zum Zitat Tan, J., Xie, Z., Boots, B., Liu, C.K.: Simulation-based design of dynamic controllers for humanoid balancing. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016) Tan, J., Xie, Z., Boots, B., Liu, C.K.: Simulation-based design of dynamic controllers for humanoid balancing. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)
17.
Zurück zum Zitat Du, Y., Watkins, O., Darrell, T., Abbeel, P., Pathak, D.: Auto-tuned sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021) Du, Y., Watkins, O., Darrell, T., Abbeel, P., Pathak, D.: Auto-tuned sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)
18.
Zurück zum Zitat Chebotar, Y., Handa, A., Makoviychuk, V., et al.: Closing the sim-to-real loop: adapting simulation randomization with real-world experience. In: 2019 International Conference on Robotics and Automation (ICRA) (2019) Chebotar, Y., Handa, A., Makoviychuk, V., et al.: Closing the sim-to-real loop: adapting simulation randomization with real-world experience. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)
19.
Zurück zum Zitat Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Motion planning for quadrupedal locomotion: coupled planning, terrain mapping, and whole-body control. IEEE Trans. Robot. (2020) Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Motion planning for quadrupedal locomotion: coupled planning, terrain mapping, and whole-body control. IEEE Trans. Robot. (2020)
20.
Zurück zum Zitat Rudin, N., Hoeller, D., Reist, P., Hutter, M.: Learning to walk in minutes using massively parallel deep reinforcement learning. In: Conference on Robot Learning (2022) Rudin, N., Hoeller, D., Reist, P., Hutter, M.: Learning to walk in minutes using massively parallel deep reinforcement learning. In: Conference on Robot Learning (2022)
21.
Zurück zum Zitat Sorokin, M., Tan, J., Liu, C.K., Ha, S.: Learning to navigate sidewalks in outdoor environments. IEEE Robot. Autom. Lett. (2022) Sorokin, M., Tan, J., Liu, C.K., Ha, S.: Learning to navigate sidewalks in outdoor environments. IEEE Robot. Autom. Lett. (2022)
22.
Zurück zum Zitat Agarwal, A., Kumar, A., Malik, J., Pathak, D.: Legged locomotion in challenging terrains using egocentric vision. In: 6th Annual Conference on Robot Learning (2022) Agarwal, A., Kumar, A., Malik, J., Pathak, D.: Legged locomotion in challenging terrains using egocentric vision. In: 6th Annual Conference on Robot Learning (2022)
23.
Zurück zum Zitat Tsounis, V., Alge, M., Lee, J., Farshidian, F., Hutter, M.: Deepgait: planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. (2020) Tsounis, V., Alge, M., Lee, J., Farshidian, F., Hutter, M.: Deepgait: planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. (2020)
24.
Zurück zum Zitat Smith, L., Kew, J.C., Peng, X.B., Ha, S., Tan, J., Levine, S.: Legged robots that keep on learning: fine-tuning locomotion policies in the real world. In: 2022 International Conference on Robotics and Automation (ICRA) (2022) Smith, L., Kew, J.C., Peng, X.B., Ha, S., Tan, J., Levine, S.: Legged robots that keep on learning: fine-tuning locomotion policies in the real world. In: 2022 International Conference on Robotics and Automation (ICRA) (2022)
25.
Zurück zum Zitat Peng, X.B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784 (2020) Peng, X.B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:​2004.​00784 (2020)
26.
Zurück zum Zitat Nagabandi, A., Clavera, I., Liu, S., et al.: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In: International Conference on Learning Representations (2018) Nagabandi, A., Clavera, I., Liu, S., et al.: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In: International Conference on Learning Representations (2018)
27.
Zurück zum Zitat Yu, W., Tan, J., Liu, C.K., Turk, G.: Preparing for the unknown: learning a universal policy with online system identification. Robot. Sci. Syst. (2017) Yu, W., Tan, J., Liu, C.K., Turk, G.: Preparing for the unknown: learning a universal policy with online system identification. Robot. Sci. Syst. (2017)
28.
Zurück zum Zitat Zhu, S., Kimmel, A., Bekris, K., Boularias, A.: Fast model identification via physics engines for data-efficient policy search. In: International Joint Conference on Artificial Intelligence (IJCAI) (2018) Zhu, S., Kimmel, A., Bekris, K., Boularias, A.: Fast model identification via physics engines for data-efficient policy search. In: International Joint Conference on Artificial Intelligence (IJCAI) (2018)
30.
Zurück zum Zitat Jiang, Y., Zhang, T., Ho, D., et al.: SimGAN: hybrid simulator identification for domain adaptation via adversarial reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021) Jiang, Y., Zhang, T., Ho, D., et al.: SimGAN: hybrid simulator identification for domain adaptation via adversarial reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)
31.
Zurück zum Zitat Allevato, A., Short, E.S., Pryor, M., Thomaz, A.: Tunenet: one-shot residual tuning for system identification and sim-to-real robot task transfer. In: Conference on Robot Learning (2020) Allevato, A., Short, E.S., Pryor, M., Thomaz, A.: Tunenet: one-shot residual tuning for system identification and sim-to-real robot task transfer. In: Conference on Robot Learning (2020)
32.
Zurück zum Zitat Iscen, A., Caluwaerts, K., Tan, J., et al.: Policies modulating trajectory generators. In: Conference on Robot Learning (2018) Iscen, A., Caluwaerts, K., Tan, J., et al.: Policies modulating trajectory generators. In: Conference on Robot Learning (2018)
33.
35.
Zurück zum Zitat Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017) Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:​1707.​06347 (2017)
Metadaten
Titel
A Novel Framework for Adaptive Quadruped Robot Locomotion Learning in Uncertain Environments
verfasst von
Mengyuan Li
Bin Guo
Kaixing Zhao
Ruonan Xu
Sicong Liu
Sitong Mao
Shunbo Zhou
Qiaobo Xu
Zhiwen Yu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9896-8_10

Premium Partner