Skip to main content
Erschienen in: Wireless Personal Communications 3/2017

09.03.2017

A Novel Interdependent Source-Channel Coding Technique for Enhanced Energy Efficiency in Communication over Wireless Sensor Networks

verfasst von: N. C. Resmi, Sonali Chouhan

Erschienen in: Wireless Personal Communications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reliable energy efficient information transmission is the primary design objective of a Wireless Sensor Network (WSN), considering its unique energy and resource constraints. Energy efficiency and bit error rate (BER) performance are the basic criteria to be taken into account while designing an optimal error correction scheme for WSNs. In this paper, a novel energy efficient error control scheme is proposed which minimizes the energy overheads of a typical error control scheme such as additional bits’ transmit energy and encoding/decoding energy, while achieving a better BER performance compared to the standard schemes. The redundant bits’ transmit energy is saved by incorporating compression and coding energy is minimized by employing simpler operations compared to other schemes. Further,the proposed scheme is validated in the context of mica2 motes. The BER performance and energy consumption of the presented scheme are studied and compared with standard error control schemes,such as, Hamming (7, 4) and RS (31, 29). Simulation results demonstrate the efficacy of the proposed methodology yielding a coding gain (CG) of 4.093 dB with a parameter selection of {30, 7, 2, 5}, in AWGN channel at BER of \(10^{-5}\), as compared to CG of 0.561 dB and 1.485 dB obtained using Hamming (7, 4) and RS (31, 29), respectively. Further, the standard codes above have a redundancy of 75% and 6.9% respectively while the proposed code with the above parameters achieves a compression of 23.81%. Quantification of energy consumption corresponding to each of the above schemes is also provided to prove the energy efficiency of the proposed technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Wireless Measurement System Mica2 Data Sheet, Document Part Number: 6020-0042-04.
 
2
AVRORA: The AVR simulation and Analysis Framework, Available at http://​compilers.​cs.​ucla.​edu/​avrora/​.​
 
Literatur
1.
Zurück zum Zitat Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Hoboken: Wiley.CrossRef Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Hoboken: Wiley.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
3.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
4.
Zurück zum Zitat Nithya, V., Ramachandran, B., & Bhaskar, V. (2014). Energy efficient coded communication for ieee 802.15. 4 compliant wireless sensor networks. Wireless Personal Communications, 77(1), 675–690.CrossRef Nithya, V., Ramachandran, B., & Bhaskar, V. (2014). Energy efficient coded communication for ieee 802.15. 4 compliant wireless sensor networks. Wireless Personal Communications, 77(1), 675–690.CrossRef
5.
Zurück zum Zitat Chouhan, S., Bose, R., & Balakrishnan, M. (2009). A framework for energy-consumption-based design space exploration for wireless sensor nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7), 1017–1024.CrossRef Chouhan, S., Bose, R., & Balakrishnan, M. (2009). A framework for energy-consumption-based design space exploration for wireless sensor nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7), 1017–1024.CrossRef
6.
Zurück zum Zitat Abedi, A. (2011). Power-efficient-coded architecture for distributed wireless sensing. IET Wireless Sensor Systems, 1(3), 129–136.CrossRef Abedi, A. (2011). Power-efficient-coded architecture for distributed wireless sensing. IET Wireless Sensor Systems, 1(3), 129–136.CrossRef
7.
Zurück zum Zitat Sankarasubramaniam, Y., Akyildiz, I. F., & McLaughlin, S. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In Sensor network protocols and applications, 2003 IEEE international workshop on, IEEE (pp. 1–8). Sankarasubramaniam, Y., Akyildiz, I. F., & McLaughlin, S. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In Sensor network protocols and applications, 2003 IEEE international workshop on, IEEE (pp. 1–8).
8.
Zurück zum Zitat Li, L., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2013). A low-complexity turbo decoder architecture for energy-efficient wireless sensor networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(1), 14–22.CrossRef Li, L., Maunder, R. G., Al-Hashimi, B. M., & Hanzo, L. (2013). A low-complexity turbo decoder architecture for energy-efficient wireless sensor networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(1), 14–22.CrossRef
9.
Zurück zum Zitat Yitbarek, YH., Yu, K., Åkerberg, J., Gidlund, M., & Björkman, M. (2014). Implementation and evaluation of error control schemes in industrial wireless sensor networks. In Industrial Technology (ICIT), 2014 IEEE International Conference on, IEEE, (pp. 730–735). Yitbarek, YH., Yu, K., Åkerberg, J., Gidlund, M., & Björkman, M. (2014). Implementation and evaluation of error control schemes in industrial wireless sensor networks. In Industrial Technology (ICIT), 2014 IEEE International Conference on, IEEE, (pp. 730–735).
10.
Zurück zum Zitat Xiong, Z., Liveris, A. D., & Cheng, S. (2004). Distributed source coding for sensor networks. IEEE Signal Processing Magazine, 21(5), 80–94.CrossRef Xiong, Z., Liveris, A. D., & Cheng, S. (2004). Distributed source coding for sensor networks. IEEE Signal Processing Magazine, 21(5), 80–94.CrossRef
11.
Zurück zum Zitat Deligiannis, N., Zimos, E., Ofrim, D. M., Andreopoulos, Y., & Munteanu, A. (2015). Distributed joint source-channel coding with copula-function-based correlation modeling for wireless sensors measuring temperature. IEEE Sensors Journal, 15(8), 4496–4507.CrossRef Deligiannis, N., Zimos, E., Ofrim, D. M., Andreopoulos, Y., & Munteanu, A. (2015). Distributed joint source-channel coding with copula-function-based correlation modeling for wireless sensors measuring temperature. IEEE Sensors Journal, 15(8), 4496–4507.CrossRef
12.
Zurück zum Zitat Zhao, Y., & Garcia-Frias, J. (2006). Turbo compression/joint source-channel coding of correlated binary sources with hidden markov correlation. Signal Processing, 86(11), 3115–3122.CrossRefMATH Zhao, Y., & Garcia-Frias, J. (2006). Turbo compression/joint source-channel coding of correlated binary sources with hidden markov correlation. Signal Processing, 86(11), 3115–3122.CrossRefMATH
13.
Zurück zum Zitat Garcia-Frias, J., Zhao, Y., & Zhong, W. (2007). Turbo-like codes for transmission of correlated sources over noisy channels. IEEE Signal Processing Magazine, 24(5), 58–66.CrossRef Garcia-Frias, J., Zhao, Y., & Zhong, W. (2007). Turbo-like codes for transmission of correlated sources over noisy channels. IEEE Signal Processing Magazine, 24(5), 58–66.CrossRef
14.
Zurück zum Zitat Akyildiz, I. F., & Vuran, M. C. (2011). Theory and design of digital communication systems. New York: Cambridge University Press. Akyildiz, I. F., & Vuran, M. C. (2011). Theory and design of digital communication systems. New York: Cambridge University Press.
15.
Zurück zum Zitat Proakis, J. (2001). Digital communications. Boston: McGraw-Hill.MATH Proakis, J. (2001). Digital communications. Boston: McGraw-Hill.MATH
16.
Zurück zum Zitat Ha, T. (2011). Theory and design of digital communication systems. New York: Cambridge University Press. Ha, T. (2011). Theory and design of digital communication systems. New York: Cambridge University Press.
17.
Zurück zum Zitat Wells, R. (1999). Applied coding and information theory for engineers. Upper Saddle River, N.J.: Prentice Hall. Wells, R. (1999). Applied coding and information theory for engineers. Upper Saddle River, N.J.: Prentice Hall.
18.
Zurück zum Zitat Chouhan, S., Balakrishnan, M., & Bose, R. (2012). System-level design space exploration methodology for energy-efficient sensor node configurations: An experimental validation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4), 586–596.CrossRef Chouhan, S., Balakrishnan, M., & Bose, R. (2012). System-level design space exploration methodology for energy-efficient sensor node configurations: An experimental validation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4), 586–596.CrossRef
19.
Zurück zum Zitat Lee, T. H. (2003). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.CrossRef Lee, T. H. (2003). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.CrossRef
20.
Zurück zum Zitat Titzer, BL., Lee, DK., & Palsberg, J. (2005). Avrora: Scalable sensor network simulation with precise timing. In Proceedings of the 4th international symposium on Information processing in sensor networks, IEEE Press, (p. 67). Titzer, BL., Lee, DK., & Palsberg, J. (2005). Avrora: Scalable sensor network simulation with precise timing. In Proceedings of the 4th international symposium on Information processing in sensor networks, IEEE Press, (p. 67).
22.
Zurück zum Zitat Dezfouli, B., Radi, M., Razak, S. A., Hwee-Pink, T., & Bakar, K. A. (2015). Modeling low-power wireless communications. Journal of Network and Computer Applications, 51, 102–126.CrossRef Dezfouli, B., Radi, M., Razak, S. A., Hwee-Pink, T., & Bakar, K. A. (2015). Modeling low-power wireless communications. Journal of Network and Computer Applications, 51, 102–126.CrossRef
23.
Zurück zum Zitat Sklar, B. (1988). Digital communications. Englewood Cliffs, N.J.: Prentice-Hall.MATH Sklar, B. (1988). Digital communications. Englewood Cliffs, N.J.: Prentice-Hall.MATH
Metadaten
Titel
A Novel Interdependent Source-Channel Coding Technique for Enhanced Energy Efficiency in Communication over Wireless Sensor Networks
verfasst von
N. C. Resmi
Sonali Chouhan
Publikationsdatum
09.03.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4068-8

Weitere Artikel der Ausgabe 3/2017

Wireless Personal Communications 3/2017 Zur Ausgabe

Neuer Inhalt