Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

13.02.2021

A Novel Protein Sequence Alignment-Based Patch Similarity Estimation for Two-Level Data Aggregation in WMSNs

verfasst von: Nava Barathy M., Dejey D.

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In the digital era, massive growth in Wireless Multimedia Sensor Networks (WMSNs) can be used in various applications such as environmental and industrial monitoring, disaster management. WMSN comprises many low-power camera sensor nodes that may have overlapping field of view for enhancing the accuracy of the monitored environment. Hence, huge volume of redundant data which make it inefficient in terms of network lifetime and energy. It needs to establish a tremendous suitable approach to communicate images over WMSN that handle critical factors such as maximize QoS and minimize energy consumption efficiently. There is a need for energy efficient image processing and transmission over WMSN. So aggregating multi-view images using cluster based distributed routing approaches with QoS constraints have received significant research interest. The Distributed Two-Layer Cluster framework is used in this paper for transmitting aggregated data by local cluster head (LCH) and master cluster head from various clusters to base station in multi-hop basis. This aggregated data are generated from multi-view images captured by correlated camera sensor nodes of local cluster (LC) and master cluster (MC) using first level data aggregation (FLDA) and second level data aggregation (SLDA) algorithms respectively. In FLDA, less complex novel protein sequence alignment based patch matching algorithm is used to reduce inter-view redundancy of multi-view images. Then, this first level aggregated data transmission of LC is reduced using Varying Bit Encoding based on Arithmetic Operations algorithm by combining multi-view images together and achieves its compression ratio of about 2.54. In SLDA, Higher-Order SVD is used to aggregate FLDA data from LCH for reducing MC transmission rate and achieves its compression ratio of about 9.1. The comparison of network performance results with existing cluster based routing algorithms exhibit the improvement of the proposed system in terms of performance metrices such as energy consumption, packet delivery ratio, end-to-end delay and network lifetime. This results show that PSA based TLDA performs better and average energy consumption of processing and transmitting multi-view images per round is considerably minimized to 0.320 J. Thus the proposed system prolongs the network lifetime by 35%, 6% when compared with DFRP and GRAD-CORR based TLDA in terms of number of rounds.
Literatur
1.
Zurück zum Zitat Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. CrossRef Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. CrossRef
2.
Zurück zum Zitat Simakov, D., Caspi, Y., Shechtman, E., & Irani, M. (2008). Summarizing visual data using bidirectional similarity. In IEEE conference on computer vision and pattern recognition. CVPR (pp. 1–8). Simakov, D., Caspi, Y., Shechtman, E., & Irani, M. (2008). Summarizing visual data using bidirectional similarity. In IEEE conference on computer vision and pattern recognition. CVPR (pp. 1–8).
3.
Zurück zum Zitat Yen, H. (2011). Energy-aware image aggregation in wireless visual sensor networks. In Proceedings of 2011 IEEE pacific rim conference on communications, computers and signal processing, Victoria, BC (pp. 572–577). Yen, H. (2011). Energy-aware image aggregation in wireless visual sensor networks. In Proceedings of 2011 IEEE pacific rim conference on communications, computers and signal processing, Victoria, BC (pp. 572–577).
4.
Zurück zum Zitat Fasolo, E., Rossi, M., Zorzi, W. J., & M, . (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87. CrossRef Fasolo, E., Rossi, M., Zorzi, W. J., & M, . (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87. CrossRef
5.
Zurück zum Zitat Nava Barathy, M., & Dejey, . (2020). Two-level data aggregation for WMSNs employing a novel VBEAO and HOSVD. Computer Communications, 149, 194–213. CrossRef Nava Barathy, M., & Dejey, . (2020). Two-level data aggregation for WMSNs employing a novel VBEAO and HOSVD. Computer Communications, 149, 194–213. CrossRef
6.
Zurück zum Zitat Muriati, M., & Zuriyati, A. K. A. (2014). Protein Sequence Alignment Using Dynamic Programming. Australian Journal of Basic and Applied Sciences, 8(4), 47–51. Muriati, M., & Zuriyati, A. K. A. (2014). Protein Sequence Alignment Using Dynamic Programming. Australian Journal of Basic and Applied Sciences, 8(4), 47–51.
7.
Zurück zum Zitat Sanchez, F., Salami, E., Ramirez, A., & Valero, M. (2005). Parallel processing in biological sequence comparison using general purpose processors. In Proceedings of the IEEE international workload characterization symposium (pp.99–108). Sanchez, F., Salami, E., Ramirez, A., & Valero, M. (2005). Parallel processing in biological sequence comparison using general purpose processors. In Proceedings of the IEEE international workload characterization symposium (pp.99–108).
8.
Zurück zum Zitat Sun, Y. (2015). A method of finding image similar patches based on gradient-covariance similarity. International Journal of Applied Mathematics and Machine Learning, 3, 69–78. CrossRef Sun, Y. (2015). A method of finding image similar patches based on gradient-covariance similarity. International Journal of Applied Mathematics and Machine Learning, 3, 69–78. CrossRef
9.
Zurück zum Zitat Kopf, J., Fu, C. W., Cohen-Or, D., Deussen, O., Lischinski, D., & Wong, T. T. (2007). Solid texture synthesis from 2d exemplars. In: ACM SIGGRAPH 2007, Cambridge: ACM. Kopf, J., Fu, C. W., Cohen-Or, D., Deussen, O., Lischinski, D., & Wong, T. T. (2007). Solid texture synthesis from 2d exemplars. In: ACM SIGGRAPH 2007, Cambridge: ACM.
10.
Zurück zum Zitat Wei, L. Y., Han, J., Zhou, K., Bao, H., Guo, B., & Shum, H. Y. (2008). Inverse texture synthesis. ACM Transactions on Graphics, 27, 1–9. Wei, L. Y., Han, J., Zhou, K., Bao, H., Guo, B., & Shum, H. Y. (2008). Inverse texture synthesis. ACM Transactions on Graphics, 27, 1–9.
11.
Zurück zum Zitat Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612. CrossRef Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612. CrossRef
12.
Zurück zum Zitat Narwaria, M., & Lin, W. (2012). SVD-based quality metric for image and video using machine learning. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(2), 347–364. CrossRef Narwaria, M., & Lin, W. (2012). SVD-based quality metric for image and video using machine learning. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(2), 347–364. CrossRef
13.
Zurück zum Zitat Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. CrossRef Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. CrossRef
14.
Zurück zum Zitat Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181. CrossRef Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181. CrossRef
15.
Zurück zum Zitat Moore, A., Prince, S., Warrell, J., Mohammed, U., & Jones, G. (2008). Superpixel lattices. In Proceedings of IEEE CVPR (pp. 1–8). Moore, A., Prince, S., Warrell, J., Mohammed, U., & Jones, G. (2008). Superpixel lattices. In Proceedings of IEEE CVPR (pp. 1–8).
16.
Zurück zum Zitat X. Ren and J. Malik. Learning a classification model for segmentation, CVPR, 2003. X. Ren and J. Malik. Learning a classification model for segmentation, CVPR, 2003.
17.
Zurück zum Zitat Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and supervoxels in an energy optimization framework. In Proceedings of ECCV (pp. 211–224). Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and supervoxels in an energy optimization framework. In Proceedings of ECCV (pp. 211–224).
18.
Zurück zum Zitat Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., & Siddiqi, K. (2009). Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2290–2297. CrossRef Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., & Siddiqi, K. (2009). Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2290–2297. CrossRef
19.
Zurück zum Zitat Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slicsuperpixels compared to state-of-the-art superpixel methods . IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282. CrossRef Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slicsuperpixels compared to state-of-the-art superpixel methods . IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282. CrossRef
20.
Zurück zum Zitat Criminisi, A., Perez, P., & Toyama, K. (2004). Region filling and object removal by examplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212. CrossRef Criminisi, A., Perez, P., & Toyama, K. (2004). Region filling and object removal by examplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212. CrossRef
21.
Zurück zum Zitat Efros, A., & Leung, T. (1999). Texture synthesis by non-parametric sampling. In Proceedings of international conference on computer vision (pp. 1033–1038), Kerkyra, Greece. Efros, A., & Leung, T. (1999). Texture synthesis by non-parametric sampling. In Proceedings of international conference on computer vision (pp. 1033–1038), Kerkyra, Greece.
22.
Zurück zum Zitat Xu, Z., & Sun, J. (2010). Image inpainting by patch propagation using patch sparsity. IEEE Transactions on Image Processing, 19(5), 1153–1165. MathSciNetCrossRef Xu, Z., & Sun, J. (2010). Image inpainting by patch propagation using patch sparsity. IEEE Transactions on Image Processing, 19(5), 1153–1165. MathSciNetCrossRef
23.
Zurück zum Zitat Le Meur, O., Gautier, J., & Guillemot, C. (2011). Examplar-based inpainting based on local geometry. In Proceedings of 18th IEEE ICIP (pp. 3462–3465). Le Meur, O., Gautier, J., & Guillemot, C. (2011). Examplar-based inpainting based on local geometry. In Proceedings of 18th IEEE ICIP (pp. 3462–3465).
24.
Zurück zum Zitat Bugeau, A., Bertalmio, M., Caselles, V., & Sapiro, G. (2001). Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, 2(3), 127–150. Bugeau, A., Bertalmio, M., Caselles, V., & Sapiro, G. (2001). Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, 2(3), 127–150.
25.
Zurück zum Zitat Liu, Y. H., Wang, F., & Liu, X. D. (2006). A feature matrix similarity measure method and its application to image retrieval. Journal of Pattern Recognition and Artificial Intelligence, 19(4), 497–502. Liu, Y. H., Wang, F., & Liu, X. D. (2006). A feature matrix similarity measure method and its application to image retrieval. Journal of Pattern Recognition and Artificial Intelligence, 19(4), 497–502.
26.
Zurück zum Zitat Huang, H. S., & Yang, A. Q. (2015). Face recognition based on PCA algorithm. Electronic Science and Technology, 28(8), 98–101. Huang, H. S., & Yang, A. Q. (2015). Face recognition based on PCA algorithm. Electronic Science and Technology, 28(8), 98–101.
27.
Zurück zum Zitat de la Torre, L., & Seguel, J. (2015). A parallel Needleman–Wunsch and Hirschberg Bio-sequence alignment algorithm. Cambridge: MIT Press. de la Torre, L., & Seguel, J. (2015). A parallel Needleman–Wunsch and Hirschberg Bio-sequence alignment algorithm. Cambridge: MIT Press.
28.
Zurück zum Zitat Deepa, B. C., & Nagaveni, V. (2015). Parallel Smith–Waterman algorithm for gene sequencing. International Journal on Recent and Innovation Trends in Computing and Communication, 3(5), 3237–3240. Deepa, B. C., & Nagaveni, V. (2015). Parallel Smith–Waterman algorithm for gene sequencing. International Journal on Recent and Innovation Trends in Computing and Communication, 3(5), 3237–3240.
29.
Zurück zum Zitat Wagner, R., Nowak, R., & Baraniuk, R. (2003). Distributed image compression for sensor networks using correspondence analysis and super resolution. Proceedings of IEEE International Conference on Image Processing, 1, 597–600. Wagner, R., Nowak, R., & Baraniuk, R. (2003). Distributed image compression for sensor networks using correspondence analysis and super resolution. Proceedings of IEEE International Conference on Image Processing, 1, 597–600.
30.
Zurück zum Zitat He, F., Huang, H., Wang, R., & Jiang, L. (2019). Data fusion-oriented cluster routing protocol for multimedia sensor networks based on the degree of image difference. CCF Transactions on Networking, 1, 65–77. CrossRef He, F., Huang, H., Wang, R., & Jiang, L. (2019). Data fusion-oriented cluster routing protocol for multimedia sensor networks based on the degree of image difference. CCF Transactions on Networking, 1, 65–77. CrossRef
31.
Zurück zum Zitat Felzenszwalb, F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. IJCV, 59, 167–181. CrossRef Felzenszwalb, F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. IJCV, 59, 167–181. CrossRef
32.
Zurück zum Zitat Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hierarchical graph based video segmentation. In CVPR. Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hierarchical graph based video segmentation. In CVPR.
33.
Zurück zum Zitat Yong, Z., & Pei, Q. A energy-efficient clustering routing algorithm based on distance and residual energy for wireless sensor networks. In International workshop on information and electronics engineering (IWIEE) (pp. 1882–1888). Yong, Z., & Pei, Q. A energy-efficient clustering routing algorithm based on distance and residual energy for wireless sensor networks. In International workshop on information and electronics engineering (IWIEE) (pp. 1882–1888).
34.
Zurück zum Zitat Al-Najjar, Y. A., & Chen Soong, D. (2012). Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI. International Journal of Scientific & Engineering Research, 3(8), 1–5. Al-Najjar, Y. A., & Chen Soong, D. (2012). Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI. International Journal of Scientific & Engineering Research, 3(8), 1–5.
35.
Zurück zum Zitat Hore, A., & Ziou, D (2010). Image quality metrics: PSNR vs. SSIM. In 20th international conference on pattern recognition, Istanbul (pp. 2366–2369). Hore, A., & Ziou, D (2010). Image quality metrics: PSNR vs. SSIM. In 20th international conference on pattern recognition, Istanbul (pp. 2366–2369).
36.
Zurück zum Zitat Said, A., & Pearlman, W. A. (1996). A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250. CrossRef Said, A., & Pearlman, W. A. (1996). A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250. CrossRef
37.
Zurück zum Zitat Bouridane, A., Khelifi, F., Amira, A., Kurugollu, F., & Boussakta, S. (2004). A very low bitrate embedded color image coding with SPIHT. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 689–692. Bouridane, A., Khelifi, F., Amira, A., Kurugollu, F., & Boussakta, S. (2004). A very low bitrate embedded color image coding with SPIHT. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 689–692.
38.
Zurück zum Zitat Islam, A., & Pearlman, W. A. (1999). Set partitioned sub-block coding (SPECK), ISO/IEC/JTC1/SC29, WG1 N1188. Islam, A., & Pearlman, W. A. (1999). Set partitioned sub-block coding (SPECK), ISO/IEC/JTC1/SC29, WG1 N1188.
39.
Zurück zum Zitat Pearlman, W. A., Islam, A., Nagaraj, N., & Said, A. (2004). Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1219–1235. CrossRef Pearlman, W. A., Islam, A., Nagaraj, N., & Said, A. (2004). Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1219–1235. CrossRef
40.
Zurück zum Zitat Kidwai, N. R., Khan, E., & Reisslein, M. (2016). ZM-SPECK: A fast and memoryless image coder for multimedia sensor. IEEE Sensors Journal, 16(8), 2575–2587. CrossRef Kidwai, N. R., Khan, E., & Reisslein, M. (2016). ZM-SPECK: A fast and memoryless image coder for multimedia sensor. IEEE Sensors Journal, 16(8), 2575–2587. CrossRef
41.
Zurück zum Zitat Heinzelman, W. R., & Chandrakasan, A. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of international conference on system sciences (pp. 1–10). Heinzelman, W. R., & Chandrakasan, A. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of international conference on system sciences (pp. 1–10).
42.
Zurück zum Zitat So-In, C., Udompongsuk, K., Phaudphut, C., Rujirakul, K., & Khunboa, C. (2013). Performance evaluation of LEACH on cluster head selection techniques in wireless sensor networks. In Proceedings of the ninth international Conference on Computing and Information Technology, (vol. 209, pp. 51–61). So-In, C., Udompongsuk, K., Phaudphut, C., Rujirakul, K., & Khunboa, C. (2013). Performance evaluation of LEACH on cluster head selection techniques in wireless sensor networks. In Proceedings of the ninth international Conference on Computing and Information Technology, (vol. 209, pp. 51–61).
43.
Zurück zum Zitat Zuo, Z., Lu, Q., & Luo, W. (2012). A two-hop clustered image transmission scheme for maximizing network lifetime in wireless multimedia sensor networks. Computer Communications, 35(1), 100–108. CrossRef Zuo, Z., Lu, Q., & Luo, W. (2012). A two-hop clustered image transmission scheme for maximizing network lifetime in wireless multimedia sensor networks. Computer Communications, 35(1), 100–108. CrossRef
44.
Zurück zum Zitat Heng, S., So-In, C., & Nguyen, T. G. (2017). Distributed image compression architecture over wireless multimedia sensor networks. Wireless Communications and Mobile Computing, 21. Heng, S., So-In, C., & Nguyen, T. G. (2017). Distributed image compression architecture over wireless multimedia sensor networks. Wireless Communications and Mobile Computing, 21.
45.
Zurück zum Zitat Lin, K., & Chen, M. (2011). Research on energy efficient fusion-driven routing in wireless multimedia sensor networks. Journal of Wireless Communications Network, 2011, 142. CrossRef Lin, K., & Chen, M. (2011). Research on energy efficient fusion-driven routing in wireless multimedia sensor networks. Journal of Wireless Communications Network, 2011, 142. CrossRef
Metadaten
Titel
A Novel Protein Sequence Alignment-Based Patch Similarity Estimation for Two-Level Data Aggregation in WMSNs
verfasst von
Nava Barathy M.
Dejey D.
Publikationsdatum
13.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08099-7

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe