Skip to main content
Erschienen in: Wireless Personal Communications 2/2018

20.09.2017

A Novel Random Transition Based PSO Algorithm to Maximize the Lifetime of Wireless Sensor Networks

verfasst von: Tripatjot Singh Panag, J. S. Dhillon

Erschienen in: Wireless Personal Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The lifetime of a wireless sensor network (WSN) is a critical aspect as, in most of the applications, it is not possible to replace or recharge the batteries of the sensor nodes. The lifetime of a WSN with redundant deployment can be significantly increased by dividing the sensors into disjoint sets such that each of these sets, when operated independently, provides complete coverage of the targets. In order to maximize the lifetime of the network, the maximum possible number of such sets needs to be created. The problem has been proved to be nondeterministic polynomial complete. In this paper, a hybrid approach based on combining particle swarm optimization (PSO) with random transition moves has been proposed to address this problem. A swarm of randomly initialized particles explores the entire solution space in search of an optimum solution. Three novel random transition moves have been designed to exploit the redundancy in deployment of sensors and used to guide the randomly scattered particles towards the potential optimum solutions in their neighborhood. The transition moves escalate the convergence of the algorithm. The proposed algorithm has been tested both for point coverage and area coverage applications. To authenticate and validate the results, the comparison of the results is performed with the latest existing techniques. The proposed algorithm always finds the optimum solution by making fewer fitness function evaluations. The sensitivity analysis of the control parameters has also been performed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [Series Editorial]. IEEE Communications Magazine, 51(7), 106.CrossRef Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [Series Editorial]. IEEE Communications Magazine, 51(7), 106.CrossRef
2.
Zurück zum Zitat Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: Pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.CrossRef Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: Pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.CrossRef
3.
Zurück zum Zitat Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.CrossRef Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.CrossRef
4.
Zurück zum Zitat Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.CrossRef Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.CrossRef
5.
Zurück zum Zitat Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.CrossRef Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.CrossRef
6.
Zurück zum Zitat Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.CrossRef Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.CrossRef
7.
Zurück zum Zitat Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.CrossRef Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.CrossRef
8.
Zurück zum Zitat Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.MathSciNetMATHCrossRef Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.MathSciNetMATHCrossRef
9.
Zurück zum Zitat Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.CrossRef Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.CrossRef
10.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
11.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
12.
Zurück zum Zitat Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.CrossRef Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.CrossRef
13.
Zurück zum Zitat Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks—A networking perspective. New Jersey: Wiley.MATHCrossRef Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks—A networking perspective. New Jersey: Wiley.MATHCrossRef
14.
Zurück zum Zitat Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
15.
Zurück zum Zitat Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef
16.
Zurück zum Zitat Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef
17.
Zurück zum Zitat Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integrated with mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.MathSciNetMATHCrossRef Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integrated with mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.MathSciNetMATHCrossRef
18.
Zurück zum Zitat Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.CrossRef Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.CrossRef
19.
Zurück zum Zitat Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189.
20.
Zurück zum Zitat Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRef Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRef
21.
Zurück zum Zitat Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetMATHCrossRef Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetMATHCrossRef
22.
Zurück zum Zitat Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.CrossRef Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.CrossRef
23.
Zurück zum Zitat Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.CrossRef Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.CrossRef
24.
Zurück zum Zitat Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef
25.
Zurück zum Zitat Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.CrossRef Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.CrossRef
26.
Zurück zum Zitat Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.CrossRef Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.CrossRef
27.
Zurück zum Zitat Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRef Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRef
28.
Zurück zum Zitat Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetCrossRef Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetCrossRef
29.
Zurück zum Zitat Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003, LA, USA, Vol. 3, pp. 1609–1614. Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003, LA, USA, Vol. 3, pp. 1609–1614.
30.
Zurück zum Zitat Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.CrossRef Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.CrossRef
31.
Zurück zum Zitat Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.CrossRef Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.CrossRef
32.
Zurück zum Zitat Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.CrossRef Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.CrossRef
33.
Zurück zum Zitat Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.MATHCrossRef Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.MATHCrossRef
34.
Zurück zum Zitat Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.CrossRef Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.CrossRef
35.
Zurück zum Zitat Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.CrossRef Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.CrossRef
36.
Zurück zum Zitat Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.MATHCrossRef Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.MATHCrossRef
37.
Zurück zum Zitat Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.CrossRef Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.CrossRef
38.
Zurück zum Zitat Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.CrossRef Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.CrossRef
39.
Zurück zum Zitat Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.CrossRef Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.CrossRef
40.
Zurück zum Zitat Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.CrossRef Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.CrossRef
41.
Zurück zum Zitat Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef
42.
Zurück zum Zitat Baek, S. J., Veciana, Gd, & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.CrossRef Baek, S. J., Veciana, Gd, & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.CrossRef
43.
Zurück zum Zitat Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. Proceedings of IEEE International Conference on Communications, Helsinki, 2, 472–476. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. Proceedings of IEEE International Conference on Communications, Helsinki, 2, 472–476.
44.
Zurück zum Zitat Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.CrossRef Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.CrossRef
45.
Zurück zum Zitat Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef
46.
Zurück zum Zitat Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.CrossRef Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.CrossRef
47.
Zurück zum Zitat Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.CrossRef Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.CrossRef
48.
Zurück zum Zitat Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In Proceedings of design, automation and test in Europe conference and exhibition, Paris, pp. 35–39. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In Proceedings of design, automation and test in Europe conference and exhibition, Paris, pp. 35–39.
49.
Zurück zum Zitat Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.CrossRef Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.CrossRef
50.
Zurück zum Zitat Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef
51.
Zurück zum Zitat Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.CrossRef Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.CrossRef
52.
Zurück zum Zitat Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proceedings of 3rd international symposium on information processing in sensor networks, Berkley, USA, pp. 424–432. Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proceedings of 3rd international symposium on information processing in sensor networks, Berkley, USA, pp. 424–432.
53.
Zurück zum Zitat Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.CrossRef Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.CrossRef
54.
Zurück zum Zitat Lai, C.-C., Ting, C.-K., & Ko, R.-S. (2007). An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications. In Proceedings of IEEE congress on evolutionary computation, CEC 2007, Singapore, pp. 3531–3538. Lai, C.-C., Ting, C.-K., & Ko, R.-S. (2007). An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications. In Proceedings of IEEE congress on evolutionary computation, CEC 2007, Singapore, pp. 3531–3538.
55.
Zurück zum Zitat Nagarathna, P., & Manjula R. (2015). Genetic algorithm with a new fitness function to enhance WSN lifetime. In IEEE conference proceedings of international conference on applied and theoretical computing and communication technology (iCATccT), pp. 95–99. Nagarathna, P., & Manjula R. (2015). Genetic algorithm with a new fitness function to enhance WSN lifetime. In IEEE conference proceedings of international conference on applied and theoretical computing and communication technology (iCATccT), pp. 95–99.
56.
Zurück zum Zitat Benzerbadj, A., & Kechar, B. (2013). Redundancy and criticality based scheduling in wireless video sensor networks for monitoring critical areas. In Procedia computer science 21—The 4th international conference on emerging ubiquitous systems and pervasive networks (EUSPN-2013), pp. 235–241. Benzerbadj, A., & Kechar, B. (2013). Redundancy and criticality based scheduling in wireless video sensor networks for monitoring critical areas. In Procedia computer science 21The 4th international conference on emerging ubiquitous systems and pervasive networks (EUSPN-2013), pp. 235–241.
57.
Zurück zum Zitat Xie, Z., Huang, G., He, J., & Zhang, Y. (2014). A clique-based WBAN scheduling for mobile wireless body area networks. In Procedia computer science 31—Information technology and quantitative management (ITQM 2014), pp. 1092–1101. Xie, Z., Huang, G., He, J., & Zhang, Y. (2014). A clique-based WBAN scheduling for mobile wireless body area networks. In Procedia computer science 31Information technology and quantitative management (ITQM 2014), pp. 1092–1101.
58.
Zurück zum Zitat Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communication, 85, 1689–1699.CrossRef Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communication, 85, 1689–1699.CrossRef
59.
Zurück zum Zitat Dobslaw, F., Zhang, T., & Gidlund, M. (2016). End-to-end reliability-aware scheduling for wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(2), 758–767.CrossRef Dobslaw, F., Zhang, T., & Gidlund, M. (2016). End-to-end reliability-aware scheduling for wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(2), 758–767.CrossRef
60.
Zurück zum Zitat Guo, P., Liu, X., Tang, S., & Cao, J. (2016). Enabling coverage-preserving scheduling in wireless sensor networks for structural health monitoring. IEEE Transactions on Computers, 65(8), 2456–2469.MathSciNetMATHCrossRef Guo, P., Liu, X., Tang, S., & Cao, J. (2016). Enabling coverage-preserving scheduling in wireless sensor networks for structural health monitoring. IEEE Transactions on Computers, 65(8), 2456–2469.MathSciNetMATHCrossRef
61.
Zurück zum Zitat Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover. Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover.
62.
Zurück zum Zitat Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks, Perth, pp. 1942–1948. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks, Perth, pp. 1942–1948.
63.
Zurück zum Zitat Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., & Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.CrossRef Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., & Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.CrossRef
Metadaten
Titel
A Novel Random Transition Based PSO Algorithm to Maximize the Lifetime of Wireless Sensor Networks
verfasst von
Tripatjot Singh Panag
J. S. Dhillon
Publikationsdatum
20.09.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4973-x

Weitere Artikel der Ausgabe 2/2018

Wireless Personal Communications 2/2018 Zur Ausgabe

Neuer Inhalt