Skip to main content
Erschienen in: Calcolo 1/2016

01.03.2016

A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations

verfasst von: A. H. Bhrawy, E. H. Doha, S. S. Ezz-Eldien, M. A. Abdelkawy

Erschienen in: Calcolo | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The time-fractional coupled Korteweg–de Vries (KdV) system is a generalization of the classical coupled KdV system and obtained by replacing the first order time derivatives by fractional derivatives of orders \(\nu _1\) and \(\nu _2\), \((0<\nu _1,\nu _2\le 1).\) In this paper, an accurate and robust numerical technique is proposed for solving the time-fractional coupled KdV equations. The shifted Legendre polynomials are introduced as basis functions of the collocation spectral method together with the operational matrix of fractional derivatives (described in the Caputo sense) in order to reduce the time-fractional coupled KdV equations into a problem consisting of a system of algebraic equations that greatly simplifies the problem. In order to test the efficiency and validity of the proposed numerical technique, we apply it to solve two numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)CrossRef Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)CrossRef
2.
Zurück zum Zitat Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)CrossRef Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)CrossRef
3.
Zurück zum Zitat Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)MATH Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)MATH
4.
Zurück zum Zitat Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)CrossRef Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)CrossRef
5.
Zurück zum Zitat Grzesikiewicz, W., Wakulicz, A., Zbiciak, A.: Non-linear problems of fractional in modelling of mechanical systems. Int. J. Mech. Sci. 70, 89–90 (2013)CrossRef Grzesikiewicz, W., Wakulicz, A., Zbiciak, A.: Non-linear problems of fractional in modelling of mechanical systems. Int. J. Mech. Sci. 70, 89–90 (2013)CrossRef
6.
Zurück zum Zitat Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)CrossRefMathSciNetMATH Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)CrossRefMathSciNetMATH
8.
Zurück zum Zitat Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4, 1021–1032 (2010)MathSciNetMATH Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4, 1021–1032 (2010)MathSciNetMATH
9.
Zurück zum Zitat Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Tech. 58(4), 583–592 (2010)MATH Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Tech. 58(4), 583–592 (2010)MATH
10.
Zurück zum Zitat Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation reveal structural heterogeneity effects on dispersion of repolarization. J. R. Soc. Interface. (2014). doi:10.1098/rsif.2014.0352 Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation reveal structural heterogeneity effects on dispersion of repolarization. J. R. Soc. Interface. (2014). doi:10.​1098/​rsif.​2014.​0352
11.
Zurück zum Zitat Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)CrossRefMathSciNetMATH Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)CrossRefMathSciNetMATH
12.
Zurück zum Zitat Sebaa, N., Fellah, Z.E.A., Lauriks, W., Depollier, C.: Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 86, 2668–2677 (2006)CrossRefMATH Sebaa, N., Fellah, Z.E.A., Lauriks, W., Depollier, C.: Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 86, 2668–2677 (2006)CrossRefMATH
13.
Zurück zum Zitat Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)CrossRefMathSciNetMATH Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)CrossRefMathSciNetMATH
14.
Zurück zum Zitat Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)CrossRefMathSciNetMATH Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)CrossRefMathSciNetMATH
15.
Zurück zum Zitat Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)CrossRefMathSciNet Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)CrossRefMathSciNet
16.
Zurück zum Zitat Carella, A.R., Dorao, C.A.: Least-Squares spectral method for the solution of a fractional advection-dispersion equation. J. Comput. Phys. 232, 33–45 (2013)CrossRefMathSciNet Carella, A.R., Dorao, C.A.: Least-Squares spectral method for the solution of a fractional advection-dispersion equation. J. Comput. Phys. 232, 33–45 (2013)CrossRefMathSciNet
17.
18.
Zurück zum Zitat Lucena, L.S., da Silva, L.R., Tateishi, A.A., Lenzi, M.K., Ribeiro, H.V., Lenzi, E.K.: Solutions for a fractional diffusion equation with noninteger dimensions. Nonlinear Anal. Real World Appl. 13, 1955–1960 (2012)CrossRefMathSciNetMATH Lucena, L.S., da Silva, L.R., Tateishi, A.A., Lenzi, M.K., Ribeiro, H.V., Lenzi, E.K.: Solutions for a fractional diffusion equation with noninteger dimensions. Nonlinear Anal. Real World Appl. 13, 1955–1960 (2012)CrossRefMathSciNetMATH
19.
Zurück zum Zitat Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)CrossRefMathSciNetMATH Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)CrossRefMathSciNetMATH
20.
Zurück zum Zitat Khan, N.A., Khan, N.-U., Ara, A., Jamil, M.: Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111–118 (2012)CrossRef Khan, N.A., Khan, N.-U., Ara, A., Jamil, M.: Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111–118 (2012)CrossRef
21.
Zurück zum Zitat Gao, G.-H., Sun, Z.-Z., Zhang, Y.-N.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)CrossRefMathSciNetMATH Gao, G.-H., Sun, Z.-Z., Zhang, Y.-N.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)CrossRefMathSciNetMATH
22.
Zurück zum Zitat Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRefMathSciNet Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRefMathSciNet
23.
Zurück zum Zitat Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRefMathSciNet Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)CrossRefMathSciNet
24.
Zurück zum Zitat Chen, J., Liu, F., Liu, Q., Chen, X., Anh, V., Turner, I., Burrage, K.: Numerical simulation for the three-dimension fractional sub-diffusion equation. Appl. Math. Model. 38, 3695–3705 (2014)CrossRefMathSciNet Chen, J., Liu, F., Liu, Q., Chen, X., Anh, V., Turner, I., Burrage, K.: Numerical simulation for the three-dimension fractional sub-diffusion equation. Appl. Math. Model. 38, 3695–3705 (2014)CrossRefMathSciNet
25.
Zurück zum Zitat Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)CrossRefMathSciNet Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)CrossRefMathSciNet
26.
Zurück zum Zitat Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218, 10642–10646 (2012)CrossRefMathSciNetMATH Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218, 10642–10646 (2012)CrossRefMathSciNetMATH
27.
Zurück zum Zitat Garra, R.: Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods. Commun. Nonlinear Sci. Numer. Simul. 17, 1549–1554 (2012)CrossRefMathSciNetMATH Garra, R.: Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods. Commun. Nonlinear Sci. Numer. Simul. 17, 1549–1554 (2012)CrossRefMathSciNetMATH
28.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)CrossRefMathSciNetMATH Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)CrossRefMathSciNetMATH
29.
30.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)CrossRefMathSciNetMATH Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)CrossRefMathSciNetMATH
31.
Zurück zum Zitat Bhrawy, A.H., Alofi, A.S., Ezz-Eldien, S.S.: A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 24, 2146–2152 (2011)CrossRefMathSciNetMATH Bhrawy, A.H., Alofi, A.S., Ezz-Eldien, S.S.: A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 24, 2146–2152 (2011)CrossRefMathSciNetMATH
32.
Zurück zum Zitat Bhrawy, A.H., Al-Shomrani, M.M.: A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ. 2012, 1–19 (2012)CrossRefMathSciNet Bhrawy, A.H., Al-Shomrani, M.M.: A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ. 2012, 1–19 (2012)CrossRefMathSciNet
33.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)CrossRefMathSciNetMATH Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)CrossRefMathSciNetMATH
34.
Zurück zum Zitat Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)CrossRefMathSciNetMATH Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)CrossRefMathSciNetMATH
35.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)CrossRefMathSciNetMATH Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)CrossRefMathSciNetMATH
36.
Zurück zum Zitat Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135–1142 (2011)CrossRefMathSciNetMATH Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135–1142 (2011)CrossRefMathSciNetMATH
37.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)CrossRefMathSciNet Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)CrossRefMathSciNet
38.
Zurück zum Zitat Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.039 Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. (2014). doi:10.​1016/​j.​jcp.​2014.​03.​039
39.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2) (2015) Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2) (2015)
41.
Zurück zum Zitat Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving \(1+1\) fractional Schrodinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus (2014). doi:10.1140/epjp/i2014-14260-6 Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving \(1+1\) fractional Schrodinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus (2014). doi:10.​1140/​epjp/​i2014-14260-6
42.
Zurück zum Zitat He, J.H.: Approximate analytical solution for seepage flow with fractional derivati in porous media. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998)CrossRefMATH He, J.H.: Approximate analytical solution for seepage flow with fractional derivati in porous media. Comput. Methods Appl. Mech. Eng. 167, 69–73 (1998)CrossRefMATH
43.
Zurück zum Zitat Ostrovsky, L.: Stepanyants YuA. Do interal solutions exist in the ocean? Rev. Geophys. 27, 293–310 (1989)CrossRef Ostrovsky, L.: Stepanyants YuA. Do interal solutions exist in the ocean? Rev. Geophys. 27, 293–310 (1989)CrossRef
44.
Zurück zum Zitat Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85, 407–408 (1981)CrossRefMathSciNet Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85, 407–408 (1981)CrossRefMathSciNet
45.
Zurück zum Zitat El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)CrossRefMathSciNetMATH El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)CrossRefMathSciNetMATH
46.
Zurück zum Zitat El-Wakil, S.A., Abulwafa, E.M., El-Shewy, E.K., Mahmoud, A.A.: Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 18, 092116 (2011)CrossRef El-Wakil, S.A., Abulwafa, E.M., El-Shewy, E.K., Mahmoud, A.A.: Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 18, 092116 (2011)CrossRef
47.
Zurück zum Zitat Liu, J.-C., Hou, G.-L.: New approximate solution for time-fractional coupled KdV equations by generalised differential transform method. Chin. Phys. B 19(11), 110203 (2010)CrossRef Liu, J.-C., Hou, G.-L.: New approximate solution for time-fractional coupled KdV equations by generalised differential transform method. Chin. Phys. B 19(11), 110203 (2010)CrossRef
48.
Zurück zum Zitat Merdan, M., Mohyud-Din, S.T.: A New Method for Time-fractionel Coupled KDV Equations with Modified Riemann–Liouville Derivative. Stud. Nonlinear Sci. 2(2), 77–86 (2011) Merdan, M., Mohyud-Din, S.T.: A New Method for Time-fractionel Coupled KDV Equations with Modified Riemann–Liouville Derivative. Stud. Nonlinear Sci. 2(2), 77–86 (2011)
Metadaten
Titel
A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations
verfasst von
A. H. Bhrawy
E. H. Doha
S. S. Ezz-Eldien
M. A. Abdelkawy
Publikationsdatum
01.03.2016
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 1/2016
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-014-0132-x

Weitere Artikel der Ausgabe 1/2016

Calcolo 1/2016 Zur Ausgabe

Premium Partner