Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

06.06.2022

A Parallel Turbo Decoder Based on Recurrent Neural Network

verfasst von: Li Zhang, Weihong Fu, Fan Shi, Chunhua Zhou, Yongyuan Liu

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A neural network-based decoder, based on a long short-term memory (LSTM) network, is proposed to solve the problem that large decoding delay and performance degradation under non-Gaussian noise due to poor parallelism of existing turbo decoding algorithms. The proposed decoder refers to a unique component coding concept of turbo codes. First, each component decoder is designed based on an LSTM network. Next, each layer of the component decoder is trained, and the trained weights are loaded into the turbo code decoding neural network as initialization parameters. Then, the turbo code decoding network is trained end-to-end. Finally, a complete turbo decoder is realized. The structural advantage of turbo code component coding is fully considered in the design process, and the problem of decoding delay caused by the existence of interleaver is cleverly avoided. The introduction of deep learning technology provides a new idea to solve the traditional communication problems. Simulation results show that the performance of the proposed decoder is improved by 0.5–1.5 dB compared with the traditional serial decoding algorithm in Gaussian white noise and t-distribution noise. When BER performance is close, the LSTM decoder requires half or even less than that of BCJR. Moreover, the results demonstrate that the proposed decoder is adaptive and can be applied to communication systems with various turbo codes. The LSTM decoder shows lower bit error rate, computational complexity and higher decoding efficiency under the same conditions. Therefore, it is necessary to study the turbo code decoding technology based on deep learning combined with the actual channel environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: Turbo-codes. IEEE Transactions on Communications, 44(10), 1261–1271.CrossRef Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: Turbo-codes. IEEE Transactions on Communications, 44(10), 1261–1271.CrossRef
2.
Zurück zum Zitat Bahl, L. R., Cocke, J., & Jelinek, F. (1974). Optimal decoding of linear codes for minimizing symbol error rate (Corresp.). IEEE Transactions on Information Theory, 20(2), 284–287.CrossRef Bahl, L. R., Cocke, J., & Jelinek, F. (1974). Optimal decoding of linear codes for minimizing symbol error rate (Corresp.). IEEE Transactions on Information Theory, 20(2), 284–287.CrossRef
3.
Zurück zum Zitat Robertson, P., Villebrun, E., & Hoeher, P. (1993). A comparison of optimal and sub-optimal MAP decoding algorithm operating in the Log domain. In Proceedings IEEE international conference on communications ICC '95 (pp. 1009–1010). Robertson, P., Villebrun, E., & Hoeher, P. (1993). A comparison of optimal and sub-optimal MAP decoding algorithm operating in the Log domain. In Proceedings IEEE international conference on communications ICC '95 (pp. 1009–1010).
4.
Zurück zum Zitat Mackay, D. J., & Nerl, R. M. (1996). Near Shannon limit performance of low density parity check codes. Electronics Letters, 32(18), 1645–1646.CrossRef Mackay, D. J., & Nerl, R. M. (1996). Near Shannon limit performance of low density parity check codes. Electronics Letters, 32(18), 1645–1646.CrossRef
5.
Zurück zum Zitat Richardson, T. J., & Urbanke, R. (2008). Modern coding theory. Cambridge: Cambridge University Press.CrossRef Richardson, T. J., & Urbanke, R. (2008). Modern coding theory. Cambridge: Cambridge University Press.CrossRef
6.
Zurück zum Zitat Maunder, R. G. (2015). A fully-parallel turbo decoding algorithm. IEEE Transactions on Communications, 63(8), 2762–2775.MathSciNetCrossRef Maunder, R. G. (2015). A fully-parallel turbo decoding algorithm. IEEE Transactions on Communications, 63(8), 2762–2775.MathSciNetCrossRef
7.
Zurück zum Zitat Jannesari, A., & Kamarei, M. (2007). Comments on “A general theory of phase noise in electrical oscillators.” IEEE Journal of Solid-State Circuits, 42(10), 2314–2314.CrossRef Jannesari, A., & Kamarei, M. (2007). Comments on “A general theory of phase noise in electrical oscillators.” IEEE Journal of Solid-State Circuits, 42(10), 2314–2314.CrossRef
8.
Zurück zum Zitat Bert, L. D., Caldera, P., & Schwingshackl, D. (2011). On noise modeling for power line communications. IEEE International Symposium on Power Line Communications and Its Applications, 2011, 283–288. Bert, L. D., Caldera, P., & Schwingshackl, D. (2011). On noise modeling for power line communications. IEEE International Symposium on Power Line Communications and Its Applications, 2011, 283–288.
10.
Zurück zum Zitat Zhou, Y., Li, R., & Zhao, Z. (2015). On the-stable distribution of base stations in cellular networks. IEEE Communications Letters, 19(10), 1–1.CrossRef Zhou, Y., Li, R., & Zhao, Z. (2015). On the-stable distribution of base stations in cellular networks. IEEE Communications Letters, 19(10), 1–1.CrossRef
11.
Zurück zum Zitat He, H., Wen, C. K., & Jin, S. (2018). Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wireless Communications Letters, 7(5), 852–855.CrossRef He, H., Wen, C. K., & Jin, S. (2018). Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wireless Communications Letters, 7(5), 852–855.CrossRef
12.
Zurück zum Zitat Farsad, N., & Goldsmith, A. (2017). Detection algorithms for communication systems using deep learning. arXiv preprint arXiv:170508044. Farsad, N., & Goldsmith, A. (2017). Detection algorithms for communication systems using deep learning. arXiv preprint arXiv:170508044.
13.
Zurück zum Zitat Jeon, Y. S., Hong, S. N., & Lee, N. (2018). Supervised-learning-aided communication framework for massive MIMO systems with low-resolution ADCs. IEEE Transactions on Vehicular Technology, 67(8), 1–1.CrossRef Jeon, Y. S., Hong, S. N., & Lee, N. (2018). Supervised-learning-aided communication framework for massive MIMO systems with low-resolution ADCs. IEEE Transactions on Vehicular Technology, 67(8), 1–1.CrossRef
14.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 60(6), 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 60(6), 1097–1105.
15.
Zurück zum Zitat Russakovsky, O., Deng, J., & Su, H. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.MathSciNetCrossRef Russakovsky, O., Deng, J., & Su, H. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.MathSciNetCrossRef
16.
Zurück zum Zitat Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019.
17.
Zurück zum Zitat Nachmani, E., Be’ery, Y., & Burshtein, D. (2016). Learning to decode linear codes using deep learning. In 2016 54th annual Allerton conference on communication, control, and computing (Allerton) (pp. 341–346). Nachmani, E., Be’ery, Y., & Burshtein, D. (2016). Learning to decode linear codes using deep learning. In 2016 54th annual Allerton conference on communication, control, and computing (Allerton) (pp. 341–346).
18.
19.
Zurück zum Zitat Nachmani, E., Marciano, E., & Burshtein, D. (2017). RNN decoding of linear block codes. arXiv preprint arXiv:170207560. Nachmani, E., Marciano, E., & Burshtein, D. (2017). RNN decoding of linear block codes. arXiv preprint arXiv:170207560.
20.
Zurück zum Zitat Nachmani, E., Marciano, E., Lugosch, L., et al. (2018). Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected Topics in Signal Processing, 12(1), 119–131.CrossRef Nachmani, E., Marciano, E., Lugosch, L., et al. (2018). Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected Topics in Signal Processing, 12(1), 119–131.CrossRef
21.
Zurück zum Zitat O’shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef O’shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef
22.
Zurück zum Zitat Gruber, T., Cammerer, S., & Hoydis, J. (2017). On deep learning-based channel decoding. In 2017 51st annual conference on information sciences and systems (CISS) (pp. 1–6). Gruber, T., Cammerer, S., & Hoydis, J. (2017). On deep learning-based channel decoding. In 2017 51st annual conference on information sciences and systems (CISS) (pp. 1–6).
23.
Zurück zum Zitat Liang, F., Shen, C., & Wu, F. (2018). An iterative BP-CNN architecture for channel decoding. IEEE Journal of Selected Topics in Signal Processing, 12(1), 144–159.CrossRef Liang, F., Shen, C., & Wu, F. (2018). An iterative BP-CNN architecture for channel decoding. IEEE Journal of Selected Topics in Signal Processing, 12(1), 144–159.CrossRef
24.
Zurück zum Zitat Annauth, R., & Rughooputh, H. (1999). Neural network decoding of turbo codes. In IJCNN’99. International joint conference on neural networks. Proceedings (Cat. No.99CH36339) (Vol. 5, pp. 3336–3341). Annauth, R., & Rughooputh, H. (1999). Neural network decoding of turbo codes. In IJCNN’99. International joint conference on neural networks. Proceedings (Cat. No.99CH36339) (Vol. 5, pp. 3336–3341).
25.
Zurück zum Zitat Zhang, X., & Luo, T. (2019). A RNN decoder for channel decoding under correlated noise. In 2019 IEEE/CIC international conference on communications workshops in China (ICCC Workshops) (pp. 30–35). Zhang, X., & Luo, T. (2019). A RNN decoder for channel decoding under correlated noise. In 2019 IEEE/CIC international conference on communications workshops in China (ICCC Workshops) (pp. 30–35).
26.
Zurück zum Zitat Cammerer, S., Gruber, T., & Hoydis, J. (2017). Scaling deep learning-based decoding of polar codes via partitioning. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). Cammerer, S., Gruber, T., & Hoydis, J. (2017). Scaling deep learning-based decoding of polar codes via partitioning. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6).
27.
Zurück zum Zitat Kim, H., Jiang, Y., & Rana, R. (2018). Communication algorithms via deep learning. arXiv preprint arXiv:180509317. Kim, H., Jiang, Y., & Rana, R. (2018). Communication algorithms via deep learning. arXiv preprint arXiv:180509317.
28.
Zurück zum Zitat Wang, Y. T. (2019). Research of channel decoding algorithm based on machine learning (pp. 60–68). University of Electronic Science and Technology of China. Wang, Y. T. (2019). Research of channel decoding algorithm based on machine learning (pp. 60–68). University of Electronic Science and Technology of China.
29.
Zurück zum Zitat Abadi, M., Barham, P., & Chen, J. (2016). Tensorflow: A system for large-scale machine learning. USENIX Association. Abadi, M., Barham, P., & Chen, J. (2016). Tensorflow: A system for large-scale machine learning. USENIX Association.
30.
Zurück zum Zitat Manswi, N. K., Manaswi, N. K., & John, S. (2018). Deep learning with applications using python. Apress Media, LLC.CrossRef Manswi, N. K., Manaswi, N. K., & John, S. (2018). Deep learning with applications using python. Apress Media, LLC.CrossRef
Metadaten
Titel
A Parallel Turbo Decoder Based on Recurrent Neural Network
verfasst von
Li Zhang
Weihong Fu
Fan Shi
Chunhua Zhou
Yongyuan Liu
Publikationsdatum
06.06.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09779-8

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt