Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2018

02.01.2018 | Research Paper

A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

verfasst von: Z. M. Zheng, B. Wang

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi, S.U.S., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: International mechanical engineering congress and exhibition, San Francisco, Nov. 12–17 (1995) Choi, S.U.S., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: International mechanical engineering congress and exhibition, San Francisco, Nov. 12–17 (1995)
2.
Zurück zum Zitat Lee, S., Choi, S.U.S., Li, S., et al.: Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 121, 280–9 (1999)CrossRef Lee, S., Choi, S.U.S., Li, S., et al.: Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 121, 280–9 (1999)CrossRef
3.
Zurück zum Zitat Eastman, J.A., Choi, S.U.S., Li, S., et al.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef Eastman, J.A., Choi, S.U.S., Li, S., et al.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef
4.
Zurück zum Zitat Das, S.K., Putra, N., Thiesen, P., et al.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)CrossRef Das, S.K., Putra, N., Thiesen, P., et al.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)CrossRef
5.
Zurück zum Zitat Kang, H.U., Kim, S.H., Oh, J.M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transf. 19, 181–191 (2006)CrossRef Kang, H.U., Kim, S.H., Oh, J.M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transf. 19, 181–191 (2006)CrossRef
6.
Zurück zum Zitat Karthikeyan, N.R., Philip, J., Raj, B.: Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 109, 50–55 (2008)CrossRef Karthikeyan, N.R., Philip, J., Raj, B.: Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 109, 50–55 (2008)CrossRef
7.
Zurück zum Zitat Mintsa, H.A., Roy, G., Nguyen, C.T., et al.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)CrossRef Mintsa, H.A., Roy, G., Nguyen, C.T., et al.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)CrossRef
8.
Zurück zum Zitat Kole, M., Dey, T.K.: Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl. Therm. Eng. 56, 45–53 (2013)CrossRef Kole, M., Dey, T.K.: Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl. Therm. Eng. 56, 45–53 (2013)CrossRef
9.
Zurück zum Zitat Lu, S.Y., Song, J.L.: Effective conductivity of composites with spherical inclusions: effect of coating and detachment. J. Appl. Phys. 79, 609–618 (1996)CrossRef Lu, S.Y., Song, J.L.: Effective conductivity of composites with spherical inclusions: effect of coating and detachment. J. Appl. Phys. 79, 609–618 (1996)CrossRef
10.
Zurück zum Zitat Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nano. Res. 5, 167–171 (2003)CrossRef Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nano. Res. 5, 167–171 (2003)CrossRef
11.
Zurück zum Zitat Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J. Nano. Res. 6, 355–361 (2014)CrossRef Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J. Nano. Res. 6, 355–361 (2014)CrossRef
12.
Zurück zum Zitat Xue, Q., Xu, W.M.: A model of thermal conductivity of nanofluids with interfacial shells. Mater. Chem. Phys. 90, 298–301 (2005)CrossRef Xue, Q., Xu, W.M.: A model of thermal conductivity of nanofluids with interfacial shells. Mater. Chem. Phys. 90, 298–301 (2005)CrossRef
13.
Zurück zum Zitat Rizvi, I.H., Jain, A., Ghosh, S.K., et al.: Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 49, 595–600 (2013)CrossRef Rizvi, I.H., Jain, A., Ghosh, S.K., et al.: Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 49, 595–600 (2013)CrossRef
14.
Zurück zum Zitat Jiang, H., Xu, Q., Huang, C., et al.: The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl. Phys. A 118, 197–205 (2015)CrossRef Jiang, H., Xu, Q., Huang, C., et al.: The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl. Phys. A 118, 197–205 (2015)CrossRef
15.
Zurück zum Zitat Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef
16.
Zurück zum Zitat Keblinski, P., Prasher, R., Eapen, J.: Thermal conductance of nanofluids: Is the controversy over? J. Nano. Res. 10, 1089–1097 (2008)CrossRef Keblinski, P., Prasher, R., Eapen, J.: Thermal conductance of nanofluids: Is the controversy over? J. Nano. Res. 10, 1089–1097 (2008)CrossRef
17.
Zurück zum Zitat Wang, B.X., Zhou, L.P., Peng, X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003)CrossRefMATH Wang, B.X., Zhou, L.P., Peng, X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003)CrossRefMATH
18.
Zurück zum Zitat Prasher, R., Evans, W., Meakin, P., et al.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)CrossRef Prasher, R., Evans, W., Meakin, P., et al.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)CrossRef
19.
Zurück zum Zitat Feng, Y., Yu, B., Xu, P., et al.: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J. Phys. D: Appl. Phys. 40, 3164 (2007)CrossRef Feng, Y., Yu, B., Xu, P., et al.: The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J. Phys. D: Appl. Phys. 40, 3164 (2007)CrossRef
20.
Zurück zum Zitat Zhou, D., Wu, H.: A thermal conductivity model of nanofluids based on particle size distribution analysis. Appl. Phys. Lett. 105, 083117 (2014)CrossRef Zhou, D., Wu, H.: A thermal conductivity model of nanofluids based on particle size distribution analysis. Appl. Phys. Lett. 105, 083117 (2014)CrossRef
21.
Zurück zum Zitat Xiao, B., Yang, Y., Chen, L.: Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol. 239, 409–414 (2013)CrossRef Xiao, B., Yang, Y., Chen, L.: Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol. 239, 409–414 (2013)CrossRef
22.
Zurück zum Zitat Jeffrey, D.J.: Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 335, 355–367 (1973)CrossRef Jeffrey, D.J.: Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 335, 355–367 (1973)CrossRef
23.
Zurück zum Zitat Chiew, Y.C., Glandt, E.D.: The effect of structure on the conductivity of a dispersion. J. Colloid Interface Sci. 94, 90–104 (1983)CrossRef Chiew, Y.C., Glandt, E.D.: The effect of structure on the conductivity of a dispersion. J. Colloid Interface Sci. 94, 90–104 (1983)CrossRef
24.
Zurück zum Zitat Chiew, Y.C., Glandt, E.D.: Effective conductivity of dispersions: the effect of resistance at the particle surfaces. Chem. Eng. Sci. 42, 2677–2685 (1987)CrossRef Chiew, Y.C., Glandt, E.D.: Effective conductivity of dispersions: the effect of resistance at the particle surfaces. Chem. Eng. Sci. 42, 2677–2685 (1987)CrossRef
25.
Zurück zum Zitat Maxwell, J.C.: Electricity and Magnetism. Clarendon Press, Oxford (1873)MATH Maxwell, J.C.: Electricity and Magnetism. Clarendon Press, Oxford (1873)MATH
26.
Zurück zum Zitat Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1, 187–191 (1962)CrossRef Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1, 187–191 (1962)CrossRef
27.
Zurück zum Zitat Murshed, S.M.S., Leong, K.C., Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008) Murshed, S.M.S., Leong, K.C., Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008)
28.
Zurück zum Zitat Sui, J., Zheng, L.C., Zhang, X.X., et al.: A novel equivalent agglomeration model for heat conduction enhancement in nanofluids. Sci. Rep. 6, 19560 (2016)CrossRef Sui, J., Zheng, L.C., Zhang, X.X., et al.: A novel equivalent agglomeration model for heat conduction enhancement in nanofluids. Sci. Rep. 6, 19560 (2016)CrossRef
29.
Zurück zum Zitat Verlet, L., Weis, J.J.: Equilibrium theory of simple liquids. Phys. Rev. A 5, 939–952 (1972)CrossRef Verlet, L., Weis, J.J.: Equilibrium theory of simple liquids. Phys. Rev. A 5, 939–952 (1972)CrossRef
30.
Zurück zum Zitat Liang, Z., Tsai, H.L.: Thermal conductivity of interfacial layers in nanofluids. Phys. Rev. E 83, 041602 (2011)CrossRef Liang, Z., Tsai, H.L.: Thermal conductivity of interfacial layers in nanofluids. Phys. Rev. E 83, 041602 (2011)CrossRef
31.
Zurück zum Zitat Tso, C.Y., Fu, S.C., Chao, C.Y.: A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 70, 202–214 (2014)CrossRef Tso, C.Y., Fu, S.C., Chao, C.Y.: A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 70, 202–214 (2014)CrossRef
32.
Zurück zum Zitat Xie, H., Fujii, M., Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)CrossRefMATH Xie, H., Fujii, M., Zhang, X.: Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)CrossRefMATH
33.
Zurück zum Zitat Sohrabi, N., Masoumi, N., Behzadmehr, A., et al.: A simple analytical model for calculating the effective thermal conductivity of nanofluids. Heat Transf. Asian Res. 39, 141–150 (2010) Sohrabi, N., Masoumi, N., Behzadmehr, A., et al.: A simple analytical model for calculating the effective thermal conductivity of nanofluids. Heat Transf. Asian Res. 39, 141–150 (2010)
34.
Zurück zum Zitat Xue, L., Keblinski, P., Phillpot, S.R., et al.: Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transf. 47, 4277–4284 (2004)CrossRefMATH Xue, L., Keblinski, P., Phillpot, S.R., et al.: Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transf. 47, 4277–4284 (2004)CrossRefMATH
35.
Zurück zum Zitat Yu, C.J., Richter, A.G., Datta, A., et al.: Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B: Cond. Mater. 283, 27–31 (2000)CrossRef Yu, C.J., Richter, A.G., Datta, A., et al.: Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B: Cond. Mater. 283, 27–31 (2000)CrossRef
36.
Zurück zum Zitat Xue, Q.Z.: Model for effective thermal conductivity of nanofluids. Phys. Lett. A 307, 313–317 (2003)CrossRef Xue, Q.Z.: Model for effective thermal conductivity of nanofluids. Phys. Lett. A 307, 313–317 (2003)CrossRef
37.
Zurück zum Zitat Firlar, E., Çınar, S., Kashyap, S., et al.: Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ. Sci. Rep. 5, 9830 (2015)CrossRef Firlar, E., Çınar, S., Kashyap, S., et al.: Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ. Sci. Rep. 5, 9830 (2015)CrossRef
Metadaten
Titel
A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles
verfasst von
Z. M. Zheng
B. Wang
Publikationsdatum
02.01.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0738-8

Weitere Artikel der Ausgabe 3/2018

Acta Mechanica Sinica 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.