Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

A Preliminary Assessment of the Impact of Gurney Flaps on the Aerodynamic Performance Augmentation of Darrieus Wind Turbines

verfasst von : Daniele Di Rosa, Francesco Balduzzi, Alessandro Bianchini

Erschienen in: Wind Energy Exploitation in Urban Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gurney Flaps (GFs) can enhance the aerodynamic performance of airfoils, making them generate more lift and delaying the onset of stall. Since their potential was discovered in the early ’70s, GFs have been applied in several fields, including wind turbines. Here, the research has been focused mostly on the use of GFs in Horizontal Axis Wind Turbines (HAWTs), whereas a lack of studies involving the application of these devices on Darrieus Vertical-Axis Wind Turbines (VAWTs) is apparent in the literature. The benefits induced by GFs could actually be particularly interesting for this type of wind turbines, which are presently receiving a renewed attention from the industry. In the present study, the possible benefits of mounting GFs on a VAWT have been evaluated. The aerodynamic behavior of a single rotating NACA0021 airfoil equipped with different GF configurations has been investigated by means of unsteady CFD simulations. The effect of varying the size of the GF, as well as the different effects of this device at two different functioning regimes of the rotor were also analyzed. The results clearly suggested that properly-mounted GFs could notably improve the performance of a Darrieus VAWT (up to more than +20% for the 1-blade test case), especially at low tip-speed ratios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liebeck RH (1978) Design of subsonic airfoils for high lift. J. Aircr 15(9):547–561CrossRef Liebeck RH (1978) Design of subsonic airfoils for high lift. J. Aircr 15(9):547–561CrossRef
2.
Zurück zum Zitat Neuhart DH, Pendergraft OC Jr (1988) A water tunnel study of Gurney flaps Neuhart DH, Pendergraft OC Jr (1988) A water tunnel study of Gurney flaps
3.
Zurück zum Zitat Storms BL, Jang CS (1994) Lift enhancement of an airfoil using a Gurney flap and vortex generators. J Aircr 31(3):542–547CrossRef Storms BL, Jang CS (1994) Lift enhancement of an airfoil using a Gurney flap and vortex generators. J Aircr 31(3):542–547CrossRef
4.
Zurück zum Zitat Myose R, Heron I, Papadakis M (1996) Effect of Gurney flaps on a NACA 0011 airfoil. In: 34th aerospace sciences meeting and exhibit, p 59 (1996) Myose R, Heron I, Papadakis M (1996) Effect of Gurney flaps on a NACA 0011 airfoil. In: 34th aerospace sciences meeting and exhibit, p 59 (1996)
5.
Zurück zum Zitat Myose R, Heron I, Papadakis M (1996) The post-stall effect of gurney flaps on a NACA-0011 airfoil (No. 961316). SAE technical paper Myose R, Heron I, Papadakis M (1996) The post-stall effect of gurney flaps on a NACA-0011 airfoil (No. 961316). SAE technical paper
6.
Zurück zum Zitat Jang CS, Ross JC, Cummings RM (1998) Numerical investigation of an airfoil with a Gurney flap. Aircr Des 1(2):75–88CrossRef Jang CS, Ross JC, Cummings RM (1998) Numerical investigation of an airfoil with a Gurney flap. Aircr Des 1(2):75–88CrossRef
7.
Zurück zum Zitat Katz J, Dykstra L (1989) Study of an open-wheel racing-car’s rear-wing aerodynamics (No. 890600). SAE technical paper Katz J, Dykstra L (1989) Study of an open-wheel racing-car’s rear-wing aerodynamics (No. 890600). SAE technical paper
8.
Zurück zum Zitat Li Y, Wang J, Zhang P (2002) Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul Combust 68(1):27–39CrossRef Li Y, Wang J, Zhang P (2002) Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul Combust 68(1):27–39CrossRef
9.
Zurück zum Zitat Liu T, Montefort J (2007) Thin-airfoil theoretical interpretation for Gurney flap lift enhancement. J Aircr 44(2):667–671CrossRef Liu T, Montefort J (2007) Thin-airfoil theoretical interpretation for Gurney flap lift enhancement. J Aircr 44(2):667–671CrossRef
10.
Zurück zum Zitat Jeffrey D, Zhang X, Hurst DW (2001) Some aspects of the aerodynamics of Gurney flaps on a double-element wing. J Fluids Eng 123(1):99–104CrossRef Jeffrey D, Zhang X, Hurst DW (2001) Some aspects of the aerodynamics of Gurney flaps on a double-element wing. J Fluids Eng 123(1):99–104CrossRef
11.
Zurück zum Zitat Troolin DR, Longmire EK, Lai WT (2006) Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp Fluids 41(2):241–254CrossRef Troolin DR, Longmire EK, Lai WT (2006) Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp Fluids 41(2):241–254CrossRef
12.
Zurück zum Zitat Troolin DR (2009) A quantitative study of the lift-enhancing flow field generated by an airfoil with a Gurney flap. University of Minnesota Troolin DR (2009) A quantitative study of the lift-enhancing flow field generated by an airfoil with a Gurney flap. University of Minnesota
13.
Zurück zum Zitat Gopalakrishnan Meena M, Taira K, Asai K (2018) Airfoil-wake modification with gurney flap at low reynolds number. AIAA J 56(4):1348–1359CrossRef Gopalakrishnan Meena M, Taira K, Asai K (2018) Airfoil-wake modification with gurney flap at low reynolds number. AIAA J 56(4):1348–1359CrossRef
14.
Zurück zum Zitat Brown L, Filippone A (2003) Aerofoil at low speeds with Gurney flaps. Aeronaut J 107(1075):539–546 Brown L, Filippone A (2003) Aerofoil at low speeds with Gurney flaps. Aeronaut J 107(1075):539–546
15.
Zurück zum Zitat Giguere P, Lemay J, Dumas G (1995) Gurney flap effects and scaling for low-speed airfoils. In: 13th applied aerodynamics conference, p 1881 Giguere P, Lemay J, Dumas G (1995) Gurney flap effects and scaling for low-speed airfoils. In: 13th applied aerodynamics conference, p 1881
16.
Zurück zum Zitat Wang JJ, Li YC, Choi KS (2008) Gurney flap—lift enhancement, mechanisms and applications. Prog Aerosp Sci 44(1):22–47CrossRef Wang JJ, Li YC, Choi KS (2008) Gurney flap—lift enhancement, mechanisms and applications. Prog Aerosp Sci 44(1):22–47CrossRef
17.
Zurück zum Zitat Van Dam CP, Chow R, Zayas JR, Berg DE (2007) Computational investigations of small deploying tabs and flaps for aerodynamic load control. In: Journal of physics: conference series, vol 75. IOP Publishing, p 012027 Van Dam CP, Chow R, Zayas JR, Berg DE (2007) Computational investigations of small deploying tabs and flaps for aerodynamic load control. In: Journal of physics: conference series, vol 75. IOP Publishing, p 012027
18.
Zurück zum Zitat Frederick M, Kerrigan EC, Graham JMR (2010) Gust alleviation using rapidly deployed trailing-edge flaps. J Wind Eng Ind Aerodyn 98(12):712–723CrossRef Frederick M, Kerrigan EC, Graham JMR (2010) Gust alleviation using rapidly deployed trailing-edge flaps. J Wind Eng Ind Aerodyn 98(12):712–723CrossRef
19.
Zurück zum Zitat Pechlivanoglou G (2013) Passive and active flow control solutions for wind turbine blades. Ph.D. thesis, University of Berlin Pechlivanoglou G (2013) Passive and active flow control solutions for wind turbine blades. Ph.D. thesis, University of Berlin
20.
Zurück zum Zitat Williams TJH (2014) Compliant flow designs for optimum lift control of wind turbine rotors. Ph.D. thesis, University of Notre Dame Williams TJH (2014) Compliant flow designs for optimum lift control of wind turbine rotors. Ph.D. thesis, University of Notre Dame
21.
Zurück zum Zitat Bach AB (2016) Gurney flaps and micro-tabs for load control on wind turbines. Ph.D. thesis, University of Berlin Bach AB (2016) Gurney flaps and micro-tabs for load control on wind turbines. Ph.D. thesis, University of Berlin
22.
Zurück zum Zitat Fuglsang P, Bak C, Gaunaa M, Antoniou I (2004) Design and Verification of the Risø-B1 airfoil family for wind turbines. J SolEnergy Eng 126(4):1002–1010 Fuglsang P, Bak C, Gaunaa M, Antoniou I (2004) Design and Verification of the Risø-B1 airfoil family for wind turbines. J SolEnergy Eng 126(4):1002–1010
23.
Zurück zum Zitat Tongchitpakdee C, Benjanirat S, Sankar LN (2006) Numerical studies of the effects of active and passive circulation enhancement concepts on wind turbine performance. J SolEnergy Eng 128(4):432–444 Tongchitpakdee C, Benjanirat S, Sankar LN (2006) Numerical studies of the effects of active and passive circulation enhancement concepts on wind turbine performance. J SolEnergy Eng 128(4):432–444
24.
Zurück zum Zitat Chen H, Qin N (2017) Trailing-edge flow control for wind turbine performance and load con-trol. Renew Energy 105:419–435CrossRef Chen H, Qin N (2017) Trailing-edge flow control for wind turbine performance and load con-trol. Renew Energy 105:419–435CrossRef
25.
Zurück zum Zitat Alber J, Pechlivanoglou G, Paschereit CO, Twele J, Weinzierl G (2017) Parametric investigation of gurney flaps for the use on wind turbine blades. In: ASME turbo expo 2017: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, pp V009T49A015-V009T49A015 Alber J, Pechlivanoglou G, Paschereit CO, Twele J, Weinzierl G (2017) Parametric investigation of gurney flaps for the use on wind turbine blades. In: ASME turbo expo 2017: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, pp V009T49A015-V009T49A015
26.
Zurück zum Zitat Frunzulica F, Dumitrescu H, Dumitrache A (2014) Numerical investigations of dynamic stall control. INCAS Bull 6(Special 1):67–80 Frunzulica F, Dumitrescu H, Dumitrache A (2014) Numerical investigations of dynamic stall control. INCAS Bull 6(Special 1):67–80
27.
Zurück zum Zitat Ismail MF, Vijayaraghavan K (2015) The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80:20–31CrossRef Ismail MF, Vijayaraghavan K (2015) The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80:20–31CrossRef
28.
Zurück zum Zitat Dossena V, Persico G, Paradiso B, Battisti L, Dell’Anna S, Brighenti A, Benini E (2015) An experimental study of the aerodynamics and performance of a vertical axis wind turbine in confined and non-confined environment. J Energy Res Technol 137(5):051207CrossRef Dossena V, Persico G, Paradiso B, Battisti L, Dell’Anna S, Brighenti A, Benini E (2015) An experimental study of the aerodynamics and performance of a vertical axis wind turbine in confined and non-confined environment. J Energy Res Technol 137(5):051207CrossRef
29.
Zurück zum Zitat Balduzzi F, Bianchini A, Gigante FA, Ferrara G, Campobasso MS, Ferrari, L (2015) Parametric and comparative assessment of Navier-Stokes CFD methodologies for Darrieus wind turbine performance analysis. In: ASME Turbo Expo 2015: turbine technical conference and exposition. American Society of Mechanical Engineers, pp V009T46A011 Balduzzi F, Bianchini A, Gigante FA, Ferrara G, Campobasso MS, Ferrari, L (2015) Parametric and comparative assessment of Navier-Stokes CFD methodologies for Darrieus wind turbine performance analysis. In: ASME Turbo Expo 2015: turbine technical conference and exposition. American Society of Mechanical Engineers, pp V009T46A011
30.
Zurück zum Zitat Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Aerodynamics of Darrieus wind turbines airfoils: the impact of pitching moment. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V009T46A013 Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Aerodynamics of Darrieus wind turbines airfoils: the impact of pitching moment. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V009T46A013
31.
Zurück zum Zitat Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Influence of the Blade-Spoke connection point on the aerodynamic performance of Darrieus wind turbines. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V009T46A012 Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Influence of the Blade-Spoke connection point on the aerodynamic performance of Darrieus wind turbines. In: ASME turbo expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V009T46A012
32.
Zurück zum Zitat Balduzzi F, Drofelnik J, Bianchini A, Ferrara G, Ferrari L, Campobasso MS (2017) Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment. Energy 128:550–563CrossRef Balduzzi F, Drofelnik J, Bianchini A, Ferrara G, Ferrari L, Campobasso MS (2017) Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment. Energy 128:550–563CrossRef
33.
Zurück zum Zitat Balduzzi F, Marten D, Bianchini A, Drofelnik J, Ferrari L, Campobasso MS, Pech-livanoglou G, Nayeri CN, Ferrara G, Paschereit CO (2018) Three-dimensional aerodynamic analysis of a Darrieus wind turbine blade using computational fluid dynamics and lifting line theory. J Eng Gas Turbines Power 140(2):022602CrossRef Balduzzi F, Marten D, Bianchini A, Drofelnik J, Ferrari L, Campobasso MS, Pech-livanoglou G, Nayeri CN, Ferrara G, Paschereit CO (2018) Three-dimensional aerodynamic analysis of a Darrieus wind turbine blade using computational fluid dynamics and lifting line theory. J Eng Gas Turbines Power 140(2):022602CrossRef
34.
Zurück zum Zitat Balduzzi F, Bianchini A, Ferrara G, Ferrari L (2016) Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines. Energy 97:246–261CrossRef Balduzzi F, Bianchini A, Ferrara G, Ferrari L (2016) Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines. Energy 97:246–261CrossRef
35.
Zurück zum Zitat Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Virtual incidence effect on rotating airfoils in Darrieus wind turbines. Energy Convers Manag 111:329–338CrossRef Bianchini A, Balduzzi F, Ferrara G, Ferrari L (2016) Virtual incidence effect on rotating airfoils in Darrieus wind turbines. Energy Convers Manag 111:329–338CrossRef
36.
Zurück zum Zitat Rainbird JM, Bianchini A, Balduzzi F, Peiró J, Graham JMR, Ferrara G, Ferrari L (2015) On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines. Energy Convers Manag 106:373–384CrossRef Rainbird JM, Bianchini A, Balduzzi F, Peiró J, Graham JMR, Ferrara G, Ferrari L (2015) On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines. Energy Convers Manag 106:373–384CrossRef
37.
Zurück zum Zitat Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbines. Renew Energy 85:419–435CrossRef Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbines. Renew Energy 85:419–435CrossRef
38.
Zurück zum Zitat ANSYS® Fluent®, ©2015 ANSYS, Inc., release 16.1.0 ANSYS® Fluent®, ©2015 ANSYS, Inc., release 16.1.0
39.
Zurück zum Zitat Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605CrossRef Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605CrossRef
40.
Zurück zum Zitat Maître T, Amet E, Pellone C (2013) Modeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments. Renew Energy 51:497–512CrossRef Maître T, Amet E, Pellone C (2013) Modeling of the flow in a Darrieus water turbine: wall grid refinement analysis and comparison with experiments. Renew Energy 51:497–512CrossRef
41.
Zurück zum Zitat Raciti Castelli M, Englaro A, Benini E (2011) The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36(8):4919–4934CrossRef Raciti Castelli M, Englaro A, Benini E (2011) The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36(8):4919–4934CrossRef
Metadaten
Titel
A Preliminary Assessment of the Impact of Gurney Flaps on the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
verfasst von
Daniele Di Rosa
Francesco Balduzzi
Alessandro Bianchini
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13531-7_1