Skip to main content
Erschienen in: Electrical Engineering 2/2022

31.07.2021 | Original Paper

A probabilistic approach to assess the impact of wind power generation in transmission network expansion planning

verfasst von: Camile A. Moraes, Leonardo W. de Oliveira, Edimar J. de Oliveira, Daniel F. Botelho, Arthur Neves de Paula, Milena F. Pinto

Erschienen in: Electrical Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to accommodate the uncertainty and variability of wind power, this paper proposes a scenario-based probabilistic model to assess the impact of intermittent wind power-based Renewable Energy Resources (RES) on the Transmission Network Expansion Planning (TNEP). The objectives comprise the evaluation of impacts considering the wind power penetration into connected and unconnected buses, as well as the optimization of reinforcements that must be made to avoid unwanted wind cutting operations and load shedding. The wind power uncertainties are represented through scenarios obtained from real historical series grouped by using the well-known k-means algorithm. The methodology performance is verified in a practical equivalent Brazilian southern system, modified to include a significant amount of wind energy. The obtained results show that the RES insertion impacts the TNEP task, changing the expansion decision.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cao L, Iris K, Xiong X, Tsang DC, Zhang S, Clark JH, Hu C, Ng YH, Shang J, Ok YS (2020) “Biorenewable hydrogen production through biomass gasification: A review and future prospects,” Environmental Research, 186: 109547CrossRef Cao L, Iris K, Xiong X, Tsang DC, Zhang S, Clark JH, Hu C, Ng YH, Shang J, Ok YS (2020) “Biorenewable hydrogen production through biomass gasification: A review and future prospects,” Environmental Research, 186: 109547CrossRef
3.
Zurück zum Zitat X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied energy, vol. 137, pp. 511–536, 2015CrossRef X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied energy, vol. 137, pp. 511–536, 2015CrossRef
5.
Zurück zum Zitat Y. E. Yuksel and M. Ozturk, “Energy and exergy analysis of renewable energy sources-based integrated system for multi-generation application,” International Journal of Exergy, vol. 22, no. 3, pp. 250–278, 2017CrossRef Y. E. Yuksel and M. Ozturk, “Energy and exergy analysis of renewable energy sources-based integrated system for multi-generation application,” International Journal of Exergy, vol. 22, no. 3, pp. 250–278, 2017CrossRef
7.
Zurück zum Zitat M. Talaat, M. Farahat, and M. Elkholy, “Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies,” Energy, vol. 170, pp. 668–682, 2019CrossRef M. Talaat, M. Farahat, and M. Elkholy, “Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies,” Energy, vol. 170, pp. 668–682, 2019CrossRef
8.
Zurück zum Zitat H. Ishaq and I. Dincer, “A comparative evaluation of otec, solar and wind energy based systems for clean hydrogen production,” Journal of Cleaner Production, vol. 246, p. 118736, 2020CrossRef H. Ishaq and I. Dincer, “A comparative evaluation of otec, solar and wind energy based systems for clean hydrogen production,” Journal of Cleaner Production, vol. 246, p. 118736, 2020CrossRef
9.
Zurück zum Zitat G. Ren, J. Wan, J. Liu, D. Yu, and L. Söder, “Analysis of wind power intermittency based on historical wind power data,” Energy, vol. 150, pp. 482–492, 2018CrossRef G. Ren, J. Wan, J. Liu, D. Yu, and L. Söder, “Analysis of wind power intermittency based on historical wind power data,” Energy, vol. 150, pp. 482–492, 2018CrossRef
10.
Zurück zum Zitat D.-A. Ciupăgeanu, G. Lăzăroiu, and L. Barelli, “Wind energy integration: Variability analysis and power system impact assessment,” Energy, vol. 185, pp. 1183–1196, 2019CrossRef D.-A. Ciupăgeanu, G. Lăzăroiu, and L. Barelli, “Wind energy integration: Variability analysis and power system impact assessment,” Energy, vol. 185, pp. 1183–1196, 2019CrossRef
11.
Zurück zum Zitat GWEC (2017) Annual market update, global wind report. Global Wind Energy Council, Brussels GWEC (2017) Annual market update, global wind report. Global Wind Energy Council, Brussels
12.
Zurück zum Zitat Yamaki A, Kanematsu Y, Kikuchi Y (2020) “Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization,” Energy, 205: 118056CrossRef Yamaki A, Kanematsu Y, Kikuchi Y (2020) “Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization,” Energy, 205: 118056CrossRef
14.
Zurück zum Zitat GWEC, Global status of wind power, global wind energy council. 2018. Accessed: 2020-06-28 GWEC, Global status of wind power, global wind energy council. 2018. Accessed: 2020-06-28
15.
Zurück zum Zitat D. J. Burke and M. J. O’Malley, “Maximizing firm wind connection to security constrained transmission networks,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 749–759, 2009CrossRef D. J. Burke and M. J. O’Malley, “Maximizing firm wind connection to security constrained transmission networks,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 749–759, 2009CrossRef
16.
Zurück zum Zitat J. M. Morales, P. Pinson, and H. Madsen, “A transmission-cost-based model to estimate the amount of market-integrable wind resources,” IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 1060–1069, 2012CrossRef J. M. Morales, P. Pinson, and H. Madsen, “A transmission-cost-based model to estimate the amount of market-integrable wind resources,” IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 1060–1069, 2012CrossRef
17.
Zurück zum Zitat E. Denny and M. O’Malley, “Quantifying the total net benefits of grid integrated wind,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 605–615, 2007CrossRef E. Denny and M. O’Malley, “Quantifying the total net benefits of grid integrated wind,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 605–615, 2007CrossRef
18.
Zurück zum Zitat R. Billinton, R. Karki, Y. Gao, D. Huang, P. Hu, and W. Wangdee, “Adequacy assessment considerations in wind integrated power systems,” IEEE Transactions on Power Systems, vol. 27, pp. 2297–2305, Nov 2012CrossRef R. Billinton, R. Karki, Y. Gao, D. Huang, P. Hu, and W. Wangdee, “Adequacy assessment considerations in wind integrated power systems,” IEEE Transactions on Power Systems, vol. 27, pp. 2297–2305, Nov 2012CrossRef
19.
Zurück zum Zitat Morales J M, Conejo A J, Madsen H, Pinson P, Zugno M (2013) Integrating renewables in electricity markets: operational problems, vol. 205. Springer Science & Business Media, Berlin Morales J M, Conejo A J, Madsen H, Pinson P, Zugno M (2013) Integrating renewables in electricity markets: operational problems, vol. 205. Springer Science & Business Media, Berlin
20.
Zurück zum Zitat de Pesquisa E (2020) Energética – EPE, “Plano decenal de expansão de energia 2029,” de Pesquisa E (2020) Energética – EPE, “Plano decenal de expansão de energia 2029,”
21.
Zurück zum Zitat M. V. Loureiro, K. R. Schell, J. Claro, and P. Fischbeck, “Renewable integration through transmission network expansion planning under uncertainty,” Electric Power Systems Research, vol. 165, pp. 45–52, 2018CrossRef M. V. Loureiro, K. R. Schell, J. Claro, and P. Fischbeck, “Renewable integration through transmission network expansion planning under uncertainty,” Electric Power Systems Research, vol. 165, pp. 45–52, 2018CrossRef
22.
Zurück zum Zitat P. V. Gomes and J. T. Saraiva, “State-of-the-art of transmission expansion planning: A survey from restructuring to renewable and distributed electricity markets,” International Journal of Electrical Power & Energy Systems, vol. 111, pp. 411–424, 2019CrossRef P. V. Gomes and J. T. Saraiva, “State-of-the-art of transmission expansion planning: A survey from restructuring to renewable and distributed electricity markets,” International Journal of Electrical Power & Energy Systems, vol. 111, pp. 411–424, 2019CrossRef
23.
Zurück zum Zitat A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 3003–3011, 2014CrossRef A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 3003–3011, 2014CrossRef
24.
Zurück zum Zitat J. Wen, X. Han, J. Li, Y. Chen, H. Yi, and C. Lu, “Transmission network expansion planning considering uncertainties in loads and renewable energy resources,” CSEE Journal of Power and Energy Systems, vol. 1, no. 1, pp. 78–85, 2015CrossRef J. Wen, X. Han, J. Li, Y. Chen, H. Yi, and C. Lu, “Transmission network expansion planning considering uncertainties in loads and renewable energy resources,” CSEE Journal of Power and Energy Systems, vol. 1, no. 1, pp. 78–85, 2015CrossRef
25.
Zurück zum Zitat K. Y. Lee and M. A. El-Sharkawi, Modern heuristic optimization techniques: theory and applications to power systems, vol. 39. John Wiley & Sons, 2008CrossRef K. Y. Lee and M. A. El-Sharkawi, Modern heuristic optimization techniques: theory and applications to power systems, vol. 39. John Wiley & Sons, 2008CrossRef
26.
Zurück zum Zitat I. M. de Mendonça, I. C. S. Junior, B. H. Dias, and A. L. Marcato, “Identification of relevant routes for static expansion planning of electric power transmission systems,” Electric Power Systems Research, vol. 140, pp. 769–775, 2016CrossRef I. M. de Mendonça, I. C. S. Junior, B. H. Dias, and A. L. Marcato, “Identification of relevant routes for static expansion planning of electric power transmission systems,” Electric Power Systems Research, vol. 140, pp. 769–775, 2016CrossRef
27.
Zurück zum Zitat R. Poubel, E. De Oliveira, L. Manso, L. Honório, and L. Oliveira, “Tree searching heuristic algorithm for multi-stage transmission planning considering security constraints via genetic algorithm,” Electric Power Systems Research, vol. 142, pp. 290–297, 2017CrossRef R. Poubel, E. De Oliveira, L. Manso, L. Honório, and L. Oliveira, “Tree searching heuristic algorithm for multi-stage transmission planning considering security constraints via genetic algorithm,” Electric Power Systems Research, vol. 142, pp. 290–297, 2017CrossRef
28.
Zurück zum Zitat R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “State-of-the-art of transmission expansion planning: Comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 23, pp. 312–319, 2013CrossRef R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “State-of-the-art of transmission expansion planning: Comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 23, pp. 312–319, 2013CrossRef
29.
Zurück zum Zitat S. Asadamongkol and B. Eua-arporn, “Transmission expansion planning with ac model based on generalized benders decomposition,” International Journal of Electrical Power & Energy Systems, vol. 47, pp. 402–407, 2013CrossRef S. Asadamongkol and B. Eua-arporn, “Transmission expansion planning with ac model based on generalized benders decomposition,” International Journal of Electrical Power & Energy Systems, vol. 47, pp. 402–407, 2013CrossRef
30.
Zurück zum Zitat De Oliveira E, Moraes C, Oliveira L, Honório L, Poubel R (2018) “Efficient hybrid algorithm for transmission expansion planning,” Electrical Engineering, 100: 1–13CrossRef De Oliveira E, Moraes C, Oliveira L, Honório L, Poubel R (2018) “Efficient hybrid algorithm for transmission expansion planning,” Electrical Engineering, 100: 1–13CrossRef
31.
Zurück zum Zitat Moraes C, De Oliveira E, Khosravy M, Oliveira L, Honório L, Pinto M (2020) A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network. In: Dey N., Ashour A., Bhattacharyya S. (eds). Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing, Singapore: Springer. 71–95MATHCrossRef Moraes C, De Oliveira E, Khosravy M, Oliveira L, Honório L, Pinto M (2020) A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network. In: Dey N., Ashour A., Bhattacharyya S. (eds). Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing, Singapore: Springer. 71–95MATHCrossRef
32.
Zurück zum Zitat Y. Zhan, Q. P. Zheng, J. Wang, and P. Pinson, “Generation expansion planning with large amounts of wind power via decision-dependent stochastic programming,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3015–3026, 2016CrossRef Y. Zhan, Q. P. Zheng, J. Wang, and P. Pinson, “Generation expansion planning with large amounts of wind power via decision-dependent stochastic programming,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3015–3026, 2016CrossRef
33.
Zurück zum Zitat J. Wang, R. Wang, P. Zeng, S. You, Y. Li, and Y. Zhang, “Flexible transmission expansion planning for integrating wind power based on wind power distribution characteristics,” Journal of Electrical Engineering and Technology, vol. 10, no. 3, pp. 709–718, 2015CrossRef J. Wang, R. Wang, P. Zeng, S. You, Y. Li, and Y. Zhang, “Flexible transmission expansion planning for integrating wind power based on wind power distribution characteristics,” Journal of Electrical Engineering and Technology, vol. 10, no. 3, pp. 709–718, 2015CrossRef
34.
Zurück zum Zitat M. Jadidoleslam, A. Ebrahimi, and M. A. Latify, “Probabilistic transmission expansion planning to maximize the integration of wind power,” Renewable energy, vol. 114, pp. 866–878, 2017CrossRef M. Jadidoleslam, A. Ebrahimi, and M. A. Latify, “Probabilistic transmission expansion planning to maximize the integration of wind power,” Renewable energy, vol. 114, pp. 866–878, 2017CrossRef
35.
Zurück zum Zitat G. A. Orfanos, P. S. Georgilakis, and N. D. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1355–1362, 2012CrossRef G. A. Orfanos, P. S. Georgilakis, and N. D. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1355–1362, 2012CrossRef
36.
Zurück zum Zitat C. Munoz, E. Sauma, J. Contreras, J. Aguado, and S. de La Torre, “Impact of high wind power penetration on transmission network expansion planning,” IET Generation, Transmission & Distribution, vol. 6, no. 12, pp. 1281–1291, 2012CrossRef C. Munoz, E. Sauma, J. Contreras, J. Aguado, and S. de La Torre, “Impact of high wind power penetration on transmission network expansion planning,” IET Generation, Transmission & Distribution, vol. 6, no. 12, pp. 1281–1291, 2012CrossRef
37.
Zurück zum Zitat R. Billinton and W. Wangdee, “Reliability-based transmission reinforcement planning associated with large-scale wind farms,” IEEE Transactions on Power Systems, vol. 22, pp. 34–41, Feb 2007CrossRef R. Billinton and W. Wangdee, “Reliability-based transmission reinforcement planning associated with large-scale wind farms,” IEEE Transactions on Power Systems, vol. 22, pp. 34–41, Feb 2007CrossRef
38.
Zurück zum Zitat C. A. Moraes, E. J. de Oliveira, D. F. Botelho, L. W. de Oliveira, and M. F. Pinto, “Wind generation impact in transmission expansion planning,” Journal of Control, Automation and Electrical Systems, vol. 31, no. 1, pp. 247–256, 2020CrossRef C. A. Moraes, E. J. de Oliveira, D. F. Botelho, L. W. de Oliveira, and M. F. Pinto, “Wind generation impact in transmission expansion planning,” Journal of Control, Automation and Electrical Systems, vol. 31, no. 1, pp. 247–256, 2020CrossRef
39.
Zurück zum Zitat Sinsel S R, Riemke R L, Hoffmann V H (2019) “Challenges and solution technologies for the integration of variable renewable energy sources—a review,” Renewable Energy 145: 2271–2285CrossRef Sinsel S R, Riemke R L, Hoffmann V H (2019) “Challenges and solution technologies for the integration of variable renewable energy sources—a review,” Renewable Energy 145: 2271–2285CrossRef
40.
Zurück zum Zitat N. Mararakanye and B. Bekker, “Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics,” Renewable and Sustainable Energy Reviews, vol. 108, pp. 441–451, 2019CrossRef N. Mararakanye and B. Bekker, “Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics,” Renewable and Sustainable Energy Reviews, vol. 108, pp. 441–451, 2019CrossRef
41.
Zurück zum Zitat MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1: Statistics, (Berkeley, Calif.), pp. 281–297, University of California Press MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1: Statistics, (Berkeley, Calif.), pp. 281–297, University of California Press
42.
Zurück zum Zitat A. N. de Paula, E. J. de Oliveira, L. W. de Oliveira, and L. M. Honório, “Robust static transmission expansion planning considering contingency and wind power generation,” Journal of Control, Automation and Electrical Systems, vol. 31, no. 2, pp. 461–470, 2020CrossRef A. N. de Paula, E. J. de Oliveira, L. W. de Oliveira, and L. M. Honório, “Robust static transmission expansion planning considering contingency and wind power generation,” Journal of Control, Automation and Electrical Systems, vol. 31, no. 2, pp. 461–470, 2020CrossRef
43.
Zurück zum Zitat Mendonça IM, Ivo C, Dias BH, Marcato AL, de Oliveira EJ (2017) “Static expansion planning of electric power transmission systems using sensitivity indice. In: PowerTech, 2017 IEEE Manchester, pp. 1–5, IEEE Mendonça IM, Ivo C, Dias BH, Marcato AL, de Oliveira EJ (2017) “Static expansion planning of electric power transmission systems using sensitivity indice. In: PowerTech, 2017 IEEE Manchester, pp. 1–5, IEEE
44.
Zurück zum Zitat Correa-Florez CA, Salcedo AS, Marulanda G (2016) Reduced scenario methodology for treating uncertainty in transmission expansion with large wind power penetration. In: Transmission & distribution conference and exposition-Latin America (PES T&D-LA), 2016 IEEE PES, pp. 1–7, IEEE Correa-Florez CA, Salcedo AS, Marulanda G (2016) Reduced scenario methodology for treating uncertainty in transmission expansion with large wind power penetration. In: Transmission & distribution conference and exposition-Latin America (PES T&D-LA), 2016 IEEE PES, pp. 1–7, IEEE
45.
Zurück zum Zitat da Silva AML, Manso LA de, Sales WDS, Flávio SA, Anders GJ, de Resende LC (2012) “Chronological power flow for planning transmission systems considering intermittent sources,” IEEE Transactions on Power Systems, vol. 27, pp. 2314–2322,CrossRef da Silva AML, Manso LA de, Sales WDS, Flávio SA, Anders GJ, de Resende LC (2012) “Chronological power flow for planning transmission systems considering intermittent sources,” IEEE Transactions on Power Systems, vol. 27, pp. 2314–2322,CrossRef
46.
Zurück zum Zitat Assis FA, Manso LAF, da Silva AML, Leon JEA (2018) Transmission expansion planning with wind sources based on constructive metaheuristics. In: 2018 Simpósio Brasileiro de Sistemas Elétricos (SBSE), pp. 1–6, May. in Portuguese Assis FA, Manso LAF, da Silva AML, Leon JEA (2018) Transmission expansion planning with wind sources based on constructive metaheuristics. In: 2018 Simpósio Brasileiro de Sistemas Elétricos (SBSE), pp. 1–6, May. in Portuguese
47.
Zurück zum Zitat Nainggolan R, Perangin-angin R, Simarmata E, Tarigan AF (2019) Improved the performance of the k-means cluster using the sum of squared error (sse) optimized by using the elbow method. In: Journal of Physics: Conference Series, vol. 1361, p. 012015, IOP Publishing Nainggolan R, Perangin-angin R, Simarmata E, Tarigan AF (2019) Improved the performance of the k-means cluster using the sum of squared error (sse) optimized by using the elbow method. In: Journal of Physics: Conference Series, vol. 1361, p. 012015, IOP Publishing
48.
Zurück zum Zitat Syakur M, Khotimah B, Rochman E, Satoto B (2018) Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In: IOP Conference series: materials science and engineering, vol. 336, p. 012017, IOP Publishing Syakur M, Khotimah B, Rochman E, Satoto B (2018) Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In: IOP Conference series: materials science and engineering, vol. 336, p. 012017, IOP Publishing
49.
Zurück zum Zitat Krzanowski WJ, Lai Y (1988) “A criterion for determining the number of groups in a data set using sum-of-squares clustering,” Biometrics, 44: 23–34MathSciNetMATHCrossRef Krzanowski WJ, Lai Y (1988) “A criterion for determining the number of groups in a data set using sum-of-squares clustering,” Biometrics, 44: 23–34MathSciNetMATHCrossRef
50.
Zurück zum Zitat A. Monticelli, A. Santos, M. Pereira, S. Cunha, B. Parker, and J. Praca, “Interactive transmission network planning using a least-effort criterion,” IEEE Transactions on Power Apparatus and Systems, no. 10, pp. 3919–3925, 1982CrossRef A. Monticelli, A. Santos, M. Pereira, S. Cunha, B. Parker, and J. Praca, “Interactive transmission network planning using a least-effort criterion,” IEEE Transactions on Power Apparatus and Systems, no. 10, pp. 3919–3925, 1982CrossRef
51.
Zurück zum Zitat R. Romero, A. Monticelli, A. Garcia, and S. Haffner, “Test systems and mathematical models for transmission network expansion planning,” IEE Proceedings-Generation, Transmission and Distribution, vol. 149, no. 1, pp. 27–36, 2002CrossRef R. Romero, A. Monticelli, A. Garcia, and S. Haffner, “Test systems and mathematical models for transmission network expansion planning,” IEE Proceedings-Generation, Transmission and Distribution, vol. 149, no. 1, pp. 27–36, 2002CrossRef
Metadaten
Titel
A probabilistic approach to assess the impact of wind power generation in transmission network expansion planning
verfasst von
Camile A. Moraes
Leonardo W. de Oliveira
Edimar J. de Oliveira
Daniel F. Botelho
Arthur Neves de Paula
Milena F. Pinto
Publikationsdatum
31.07.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01361-y

Weitere Artikel der Ausgabe 2/2022

Electrical Engineering 2/2022 Zur Ausgabe

Neuer Inhalt