Skip to main content
Erschienen in: Autonomous Agents and Multi-Agent Systems 1-2/2019

06.03.2019

A probabilistic argumentation framework for reinforcement learning agents

Towards a mentalistic approach to agent profiles

verfasst von: Régis Riveret, Yang Gao, Guido Governatori, Antonino Rotolo, Jeremy Pitt, Giovanni Sartor

Erschienen in: Autonomous Agents and Multi-Agent Systems | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A bounded-reasoning agent may face two dimensions of uncertainty: firstly, the uncertainty arising from partial information and conflicting reasons, and secondly, the uncertainty arising from the stochastic nature of its actions and the environment. This paper attempts to address both dimensions within a single unified framework, by bringing together probabilistic argumentation and reinforcement learning. We show how a probabilistic rule-based argumentation framework can capture Markov decision processes and reinforcement learning agents; and how the framework allows us to characterise agents and their argument-based motivations from both a logic-based perspective and a probabilistic perspective. We advocate and illustrate the use of our approach to capture models of agency and norms, and argue that, in addition to providing a novel method for investigating agent types, the unified framework offers a sound basis for taking a mentalistic approach to agent profiles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Though there seems to be an emerging consensus in the literature conceiving ‘undercutting’ to mean an attack on a rule and ‘undermining’ to be an attack on premises, we prefer to adopt here a terminology closer to early work on rule-based argumentation, see e.g. [41].
 
2
Recall: the set of assumptive arguments supporting a set of assumptions \({Assum}\) is denoted \({\mathrm {AssumArg}}({Assum})\), see Notation  4.4.
 
3
Recall: the set of assumptive arguments supporting a set of assumptions \({Assum}\) is denoted \({\mathrm {AssumArg}}({Assum})\), see Notation 4.4.
 
4
We use the standard notation, so for \(\mathbf {Y} \subseteq \mathbf {X}\), we use \(\mathbf {x}(\mathbf {Y})\) to refer to the assignment within \(\mathbf {x}\) to the variables in \(\mathbf {Y}\). For example, if \(\mathbf {X}=\{X1,X2,X3\}\), \(\mathbf {Y}=\{X1,X2\}\) and \(\mathbf {x}=\{X1=1,X2=2,X3=3\}\), then \(\mathbf {x}(\mathbf {Y})=\{X1=1,X2=2\}\).
 
Literatur
1.
Zurück zum Zitat Alexy, R. (1989). A theory of legal argumentation: The theory of rational discourse as theory of legal justification. Oxford: Clarendon. Alexy, R. (1989). A theory of legal argumentation: The theory of rational discourse as theory of legal justification. Oxford: Clarendon.
2.
Zurück zum Zitat Amgoud, L. (2009). Argumentation for decision making. In Argumentation in artificial intelligence (pp. 301–320). Springer. Amgoud, L. (2009). Argumentation for decision making. In Argumentation in artificial intelligence (pp. 301–320). Springer.
3.
Zurück zum Zitat Artikis, A., Sergot, M., & Pitt, J. (2009). Specifying norm-governed computational societies. ACM Transactions on Computational Logic, 10(1), 1:1–1:42.MathSciNetCrossRefMATH Artikis, A., Sergot, M., & Pitt, J. (2009). Specifying norm-governed computational societies. ACM Transactions on Computational Logic, 10(1), 1:1–1:42.MathSciNetCrossRefMATH
4.
Zurück zum Zitat Artikis, A., Sergot, M., Pitt, J., Busquets, D., & Riveret, R. (2016). Specifying and executing open multi-agent systems. In Social coordination frameworks for social technical systems (pp. 197–212). Springer. Artikis, A., Sergot, M., Pitt, J., Busquets, D., & Riveret, R. (2016). Specifying and executing open multi-agent systems. In Social coordination frameworks for social technical systems (pp. 197–212). Springer.
5.
Zurück zum Zitat Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., et al. (2017). Towards artificial argumentation. AI Magazine, 38(3), 25–36.CrossRef Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., et al. (2017). Towards artificial argumentation. AI Magazine, 38(3), 25–36.CrossRef
6.
Zurück zum Zitat Atkinson, K., & Bench-Capon, T. J. M. (2007). Practical reasoning as presumptive argumentation using action based alternating transition systems. Artificial Intellignence, 171(10–15), 855–874.MathSciNetCrossRefMATH Atkinson, K., & Bench-Capon, T. J. M. (2007). Practical reasoning as presumptive argumentation using action based alternating transition systems. Artificial Intellignence, 171(10–15), 855–874.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics. The Knowledge Engineering Review, 26(4), 365–410.CrossRef Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics. The Knowledge Engineering Review, 26(4), 365–410.CrossRef
8.
Zurück zum Zitat Baroni, P., Governatori, G., & Riveret, R. (2016). On labelling statements in multi-labelling argumentation. In Proceedings of the 22nd European conference on artificial intelligence (Vol. 285, pp. 489–497). IOS Press. Baroni, P., Governatori, G., & Riveret, R. (2016). On labelling statements in multi-labelling argumentation. In Proceedings of the 22nd European conference on artificial intelligence (Vol. 285, pp. 489–497). IOS Press.
9.
Zurück zum Zitat Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Proceedings of the National Academy of Sciences of the United States of America, 42(10), 767.MathSciNetCrossRefMATH Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Proceedings of the National Academy of Sciences of the United States of America, 42(10), 767.MathSciNetCrossRefMATH
10.
Zurück zum Zitat Bench-Capon, T. J. M., & Atkinson, K. (2009). Abstract argumentation and values. In L. Rahwan & G. Simari (eds.) Argumentation in artificial intelligence. Springer. Bench-Capon, T. J. M., & Atkinson, K. (2009). Abstract argumentation and values. In L. Rahwan & G. Simari (eds.) Argumentation in artificial intelligence. Springer.
11.
Zurück zum Zitat Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 1). Belmont, MA: Athena Scientific.MATH Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 1). Belmont, MA: Athena Scientific.MATH
12.
Zurück zum Zitat Besnard, P., García, A. J., Hunter, A., Modgil, S., Prakken, H., Simari, G. R., et al. (2014). Introduction to structured argumentation. Argument & Computation, 5(1), 1–4.CrossRef Besnard, P., García, A. J., Hunter, A., Modgil, S., Prakken, H., Simari, G. R., et al. (2014). Introduction to structured argumentation. Argument & Computation, 5(1), 1–4.CrossRef
13.
Zurück zum Zitat Broersen, J., Dastani, M., Hulstijn, J., & van der Torre, L. (2002). Goal generation in the BOID architecture. Cognitive Science Quarterly, 2(3–4), 428–447. Broersen, J., Dastani, M., Hulstijn, J., & van der Torre, L. (2002). Goal generation in the BOID architecture. Cognitive Science Quarterly, 2(3–4), 428–447.
14.
Zurück zum Zitat Chen, S. H., & Huang, Y. C. (2005). Risk preference and survival dynamics. In: Agent-based simulation: From modeling methodologies to real-world applications, Agent-based social systems (Vol. 1, pp. 135–143). Tokyo: Springer. Chen, S. H., & Huang, Y. C. (2005). Risk preference and survival dynamics. In: Agent-based simulation: From modeling methodologies to real-world applications, Agent-based social systems (Vol. 1, pp. 135–143). Tokyo: Springer.
15.
Zurück zum Zitat Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London: University College of London Press. Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London: University College of London Press.
16.
Zurück zum Zitat Conte, R., & Castelfranchi, C. (2006). The mental path of norms. Ratio Juris, 19, 501–517.CrossRef Conte, R., & Castelfranchi, C. (2006). The mental path of norms. Ratio Juris, 19, 501–517.CrossRef
17.
Zurück zum Zitat Conte, R., Falcone, R., & Sartor, G. (1999). Introduction: Agents and norms: How to fill the gap? Artificial Intelligence and Law, 7(1), 1–15.CrossRef Conte, R., Falcone, R., & Sartor, G. (1999). Introduction: Agents and norms: How to fill the gap? Artificial Intelligence and Law, 7(1), 1–15.CrossRef
18.
Zurück zum Zitat Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al. (2001). Introduction to algorithms (Vol. 2). Cambridge: MIT press.MATH Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al. (2001). Introduction to algorithms (Vol. 2). Cambridge: MIT press.MATH
19.
Zurück zum Zitat Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.MathSciNetCrossRefMATH Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.MathSciNetCrossRefMATH
20.
Zurück zum Zitat Edmonds, B. (2004). How formal logic can fail to be useful for modelling or designing mas. In Regulated agent-based social systems, Lecture Notes in Computer Science (Vol. 2934, pp. 1–15). Springer. Edmonds, B. (2004). How formal logic can fail to be useful for modelling or designing mas. In Regulated agent-based social systems, Lecture Notes in Computer Science (Vol. 2934, pp. 1–15). Springer.
21.
Zurück zum Zitat Fasli, M. (2004). Formal systems and agent-based social simulation equals null? Journal of Artificial Societies and Social Simulation, 7(4), 1–7. Fasli, M. (2004). Formal systems and agent-based social simulation equals null? Journal of Artificial Societies and Social Simulation, 7(4), 1–7.
22.
Zurück zum Zitat Fornara, N., & Colombetti, M. (2009). Specifying and enforcing norms in artificial institutions. In Declarative agent languages and technologies VI, Lecture Notes in Computer Science (Vol. 5397, pp. 1–17). Springer. Fornara, N., & Colombetti, M. (2009). Specifying and enforcing norms in artificial institutions. In Declarative agent languages and technologies VI, Lecture Notes in Computer Science (Vol. 5397, pp. 1–17). Springer.
23.
Zurück zum Zitat Fox, J., & Parsons, S. (1997). On using arguments for reasoning about actions and values. In Proceedings of the AAAI spring symposium on qualitative preferences in deliberation and practical reasoning. Fox, J., & Parsons, S. (1997). On using arguments for reasoning about actions and values. In Proceedings of the AAAI spring symposium on qualitative preferences in deliberation and practical reasoning.
24.
Zurück zum Zitat Gao, Y., & Toni, F. (2014). Argumentation accelerated reinforcement learning for cooperativeulti-agent systems. In Proceedings of 21st European conference on artificial intelligence (pp. 333–338). IOS Press. Gao, Y., & Toni, F. (2014). Argumentation accelerated reinforcement learning for cooperativeulti-agent systems. In Proceedings of 21st European conference on artificial intelligence (pp. 333–338). IOS Press.
25.
Zurück zum Zitat Gao, Y., Toni, F., & Craven, R. (2012). Argumentation-based reinforcement learning for robocup soccer keepaway. In Proceedings of 20th European conference on artificial intelligence (pp. 342–347). IOS Press. Gao, Y., Toni, F., & Craven, R. (2012). Argumentation-based reinforcement learning for robocup soccer keepaway. In Proceedings of 20th European conference on artificial intelligence (pp. 342–347). IOS Press.
26.
Zurück zum Zitat Gaudou, B., Lorini, E., & Mayor, E. (2013). Moral guilt: An agent-based model analysis. In Advances in social simulation—Proceedings of the 9th conference of the european social simulation association (pp. 95–106). Gaudou, B., Lorini, E., & Mayor, E. (2013). Moral guilt: An agent-based model analysis. In Advances in social simulation—Proceedings of the 9th conference of the european social simulation association (pp. 95–106).
27.
Zurück zum Zitat Governatori, G., & Rotolo, A. (2008). BIO logical agents: Norms, beliefs, intentions in defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1), 36–69.CrossRef Governatori, G., & Rotolo, A. (2008). BIO logical agents: Norms, beliefs, intentions in defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1), 36–69.CrossRef
28.
Zurück zum Zitat Hunter, A., & Thimm, M. (2017). Probabilistic reasoning with abstract argumentation frameworks. Journal of Artificial Intelligence Research, 59, 565–611.MathSciNetCrossRefMATH Hunter, A., & Thimm, M. (2017). Probabilistic reasoning with abstract argumentation frameworks. Journal of Artificial Intelligence Research, 59, 565–611.MathSciNetCrossRefMATH
29.
Zurück zum Zitat Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques—Adaptive computation and machine learning. Cambridge: The MIT Press. Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques—Adaptive computation and machine learning. Cambridge: The MIT Press.
30.
Zurück zum Zitat Kostrikin, A. I., Manin, Y. I., & Alferieff, M. E. (1997). Linear algebra and geometry. Washington, DC: Gordon and Breach Science Publishers. Kostrikin, A. I., Manin, Y. I., & Alferieff, M. E. (1997). Linear algebra and geometry. Washington, DC: Gordon and Breach Science Publishers.
31.
Zurück zum Zitat Modgil, S., & Caminada, M. (2009). Proof theories and algorithms for abstract argumentation frameworks. In Argumentation in artificial intelligence (pp. 105–129). Springer. Modgil, S., & Caminada, M. (2009). Proof theories and algorithms for abstract argumentation frameworks. In Argumentation in artificial intelligence (pp. 105–129). Springer.
32.
Zurück zum Zitat Muller, J., & Hunter, A. (2012). An argumentation-based approach for decision making. In 24th international conference on tools with artificial intelligence (Vol. 1, pp. 564–571). IEEE. Muller, J., & Hunter, A. (2012). An argumentation-based approach for decision making. In 24th international conference on tools with artificial intelligence (Vol. 1, pp. 564–571). IEEE.
33.
Zurück zum Zitat Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: theory and application to reward shaping. In Proceedings of 16th international conference on machine learning (pp. 278–287). Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: theory and application to reward shaping. In Proceedings of 16th international conference on machine learning (pp. 278–287).
34.
Zurück zum Zitat Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement learning. In Experimental robotics IX (pp. 363–372). Springer. Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement learning. In Experimental robotics IX (pp. 363–372). Springer.
35.
Zurück zum Zitat Oren, N. (2014). Argument schemes for normative practical reasoning (pp. 63–78). Berlin: Springer.MATH Oren, N. (2014). Argument schemes for normative practical reasoning (pp. 63–78). Berlin: Springer.MATH
36.
Zurück zum Zitat Parsons, S., & Fox, J. (1996). Argumentation and decision making: A position paper. In Practical reasoning (pp. 705–709). Springer. Parsons, S., & Fox, J. (1996). Argumentation and decision making: A position paper. In Practical reasoning (pp. 705–709). Springer.
37.
Zurück zum Zitat Pattaro, E. (2005). The law and the right. In E. Pattaro (Ed.), Treatise of legal philosophy and general jurisprudence (Vol. 1). Berlin: Springer. Pattaro, E. (2005). The law and the right. In E. Pattaro (Ed.), Treatise of legal philosophy and general jurisprudence (Vol. 1). Berlin: Springer.
38.
Zurück zum Zitat Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. Cambridge, MA: MIT Press. Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. Cambridge, MA: MIT Press.
39.
Zurück zum Zitat Prakken, H. (2006). Combining sceptical epistemic reasoning with credulous practical reasoning. In Proceedings of the 1st conference on computational models of argument (pp. 311–322). IOS Press. Prakken, H. (2006). Combining sceptical epistemic reasoning with credulous practical reasoning. In Proceedings of the 1st conference on computational models of argument (pp. 311–322). IOS Press.
40.
Zurück zum Zitat Prakken, H. (2011). An abstract framework for argumentation with structured arguments. Argument and Computation, 1(2), 93–124.CrossRef Prakken, H. (2011). An abstract framework for argumentation with structured arguments. Argument and Computation, 1(2), 93–124.CrossRef
41.
Zurück zum Zitat Prakken, H., & Sartor, G. (1997). Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics, 7(1–2), 25–75.MathSciNetCrossRefMATH Prakken, H., & Sartor, G. (1997). Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics, 7(1–2), 25–75.MathSciNetCrossRefMATH
42.
Zurück zum Zitat Prakken, H., & Sartor, G. (2015). Law and logic: A review from an argumentation perspective. Artificial Intelligence, 227, 214–245.MathSciNetCrossRefMATH Prakken, H., & Sartor, G. (2015). Law and logic: A review from an argumentation perspective. Artificial Intelligence, 227, 214–245.MathSciNetCrossRefMATH
43.
Zurück zum Zitat Rahwan, I., & Simari, G. R. (Eds.). (2009). Argumentation in artificial Intelligence. Berlin: Springer. Rahwan, I., & Simari, G. R. (Eds.). (2009). Argumentation in artificial Intelligence. Berlin: Springer.
44.
Zurück zum Zitat Riveret, R., Baroni, P., Gao, Y., Governatori, G., Rotolo, A., & Sartor, G. (2018). A labelling framework for probabilistic argumentation. Annals of Mathamatics and Artificial Intelligence, 83(1), 21–71.MathSciNetCrossRefMATH Riveret, R., Baroni, P., Gao, Y., Governatori, G., Rotolo, A., & Sartor, G. (2018). A labelling framework for probabilistic argumentation. Annals of Mathamatics and Artificial Intelligence, 83(1), 21–71.MathSciNetCrossRefMATH
45.
Zurück zum Zitat Riveret, R., Korkinof, D., Draief, M., & Pitt, J. V. (2015). Probabilistic abstract argumentation: An investigation with boltzmann machines. Argumentation & Computation, 6(2), 178–218.CrossRef Riveret, R., Korkinof, D., Draief, M., & Pitt, J. V. (2015). Probabilistic abstract argumentation: An investigation with boltzmann machines. Argumentation & Computation, 6(2), 178–218.CrossRef
46.
Zurück zum Zitat Riveret, R., Pitt, J. V., Korkinof, D., & Draief, M. (2015). Neuro-symbolic agents: Boltzmann machines and probabilistic abstract argumentation with sub-arguments. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (pp. 1481–1489). ACM. Riveret, R., Pitt, J. V., Korkinof, D., & Draief, M. (2015). Neuro-symbolic agents: Boltzmann machines and probabilistic abstract argumentation with sub-arguments. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (pp. 1481–1489). ACM.
47.
Zurück zum Zitat Riveret, R., Rotolo, A., & Sartor, G. (2012). Probabilistic rule-based argumentation for norm-governed learning agents. Artificial Intelligence and Law, 20(4), 383–420.CrossRefMATH Riveret, R., Rotolo, A., & Sartor, G. (2012). Probabilistic rule-based argumentation for norm-governed learning agents. Artificial Intelligence and Law, 20(4), 383–420.CrossRefMATH
48.
Zurück zum Zitat Ross, A. (1958). On law and justice. London: Stevens. Ross, A. (1958). On law and justice. London: Stevens.
49.
Zurück zum Zitat Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical report. University of Cambridge. Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical report. University of Cambridge.
50.
Zurück zum Zitat Sartor, G. (2005). Legal reasoning: A cognitive approach to the law. Berlin: Springer. Sartor, G. (2005). Legal reasoning: A cognitive approach to the law. Berlin: Springer.
51.
Zurück zum Zitat Shams, Z., Vos, M. D., Oren, N., Padget, J., & Satoh, K. (2015). Argumentation-based normative practical reasoning. In Proceedings of the 3rd international workshop on theory and applications of formal argumentation, revised selected papers (pp. 226–242). Springer. Shams, Z., Vos, M. D., Oren, N., Padget, J., & Satoh, K. (2015). Argumentation-based normative practical reasoning. In Proceedings of the 3rd international workshop on theory and applications of formal argumentation, revised selected papers (pp. 226–242). Springer.
52.
Zurück zum Zitat Simari, G. I., Shakarian, P., & Falappa, M. A. (2016). A quantitative approach to belief revision in structured probabilistic argumentation. Annals of Mathematics and Artificial Intelligence, 76(3), 375–408.MathSciNetCrossRefMATH Simari, G. I., Shakarian, P., & Falappa, M. A. (2016). A quantitative approach to belief revision in structured probabilistic argumentation. Annals of Mathematics and Artificial Intelligence, 76(3), 375–408.MathSciNetCrossRefMATH
53.
Zurück zum Zitat Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for robocup soccer keepaway. Adaptive Behavior, 13, 165–188.CrossRef Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for robocup soccer keepaway. Adaptive Behavior, 13, 165–188.CrossRef
54.
Zurück zum Zitat Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.MATH Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.MATH
55.
Zurück zum Zitat Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An overview. In Proceedings of the ICML04 workshop on relational reinforcement learning. Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An overview. In Proceedings of the ICML04 workshop on relational reinforcement learning.
56.
Zurück zum Zitat van der Hoek, W., Roberts, M., & Wooldridge, M. (2007). Social laws in alternating time: Effectiveness, feasibility, and synthesis. Synthese, 156(1), 1–19.MathSciNetCrossRefMATH van der Hoek, W., Roberts, M., & Wooldridge, M. (2007). Social laws in alternating time: Effectiveness, feasibility, and synthesis. Synthese, 156(1), 1–19.MathSciNetCrossRefMATH
Metadaten
Titel
A probabilistic argumentation framework for reinforcement learning agents
Towards a mentalistic approach to agent profiles
verfasst von
Régis Riveret
Yang Gao
Guido Governatori
Antonino Rotolo
Jeremy Pitt
Giovanni Sartor
Publikationsdatum
06.03.2019
Verlag
Springer US
Erschienen in
Autonomous Agents and Multi-Agent Systems / Ausgabe 1-2/2019
Print ISSN: 1387-2532
Elektronische ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-019-09404-2

Weitere Artikel der Ausgabe 1-2/2019

Autonomous Agents and Multi-Agent Systems 1-2/2019 Zur Ausgabe