Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

17.08.2017

A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations

verfasst von: Darae Jeong, Junseok Kim

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a projection method for the conservative discretizations of parabolic partial differential equations. When we solve a system of discrete equations arising from the finite difference discretization of the PDE, we can use iterative algorithms such as conjugate gradient, generalized minimum residual, and multigrid methods. An iterative method is a numerical approach that generates a sequence of improved approximate solutions for a system of equations. We repeat the iterative algorithm until a numerical solution is within a specified tolerance. Therefore, even though the discretization is conservative, the actual numerical solution obtained from an iterative method is not conservative. We propose a simple projection method which projects the non-conservative numerical solution into a conservative one by using the original scheme. Numerical experiments demonstrate the proposed scheme does not degrade the accuracy of the original numerical scheme and it preserves the conservative quantity within rounding errors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)CrossRef Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)CrossRef
2.
Zurück zum Zitat Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)CrossRef Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)CrossRef
3.
Zurück zum Zitat Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comp. Mater. Sci. 81, 216–225 (2014)CrossRef Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comp. Mater. Sci. 81, 216–225 (2014)CrossRef
4.
Zurück zum Zitat Li, X., Zhang, L., Wang, S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)MathSciNetMATH Li, X., Zhang, L., Wang, S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)MathSciNetMATH
5.
Zurück zum Zitat Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH
6.
Zurück zum Zitat Chang, Q., Xu, L.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. Comput. Math. 4, 191–199 (1986)MathSciNetMATH Chang, Q., Xu, L.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. Comput. Math. 4, 191–199 (1986)MathSciNetMATH
7.
Zurück zum Zitat Chang, Q., Wang, G.: Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equation. J. Comput. Phys. 88, 362–380 (1990)MathSciNetCrossRefMATH Chang, Q., Wang, G.: Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equation. J. Comput. Phys. 88, 362–380 (1990)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)MathSciNetCrossRefMATH Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)MathSciNetCrossRefMATH Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Chang, Q., Wang, G., Guo, B.: Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary notion. J. Comput. Phys. 93, 360–375 (1991)MathSciNetCrossRefMATH Chang, Q., Wang, G., Guo, B.: Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary notion. J. Comput. Phys. 93, 360–375 (1991)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Zhang, F., Vazquez, L.: Two energy conserving numerical schemes for the Sine–Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetCrossRefMATH Zhang, F., Vazquez, L.: Two energy conserving numerical schemes for the Sine–Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Wong, Y.S., Chang, Q., Gong, L.: An initial-boundary value problem of a nonlinear Klein–Gordon equation. Appl. Math. Comput. 84, 77–93 (1997)MathSciNetMATH Wong, Y.S., Chang, Q., Gong, L.: An initial-boundary value problem of a nonlinear Klein–Gordon equation. Appl. Math. Comput. 84, 77–93 (1997)MathSciNetMATH
14.
Zurück zum Zitat Chang, Q., Guo, B., Jiang, H.: Finite difference method for generalized Zakharov equation. J. Comput. Phys. 113, 309–319 (1994)MathSciNetCrossRef Chang, Q., Guo, B., Jiang, H.: Finite difference method for generalized Zakharov equation. J. Comput. Phys. 113, 309–319 (1994)MathSciNetCrossRef
15.
Zurück zum Zitat Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)MathSciNetCrossRefMATH Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Choo, S.M., Chung, S.K.: Conservative nonlinear difference scheme for the Cahn–Hilliard equation. Comput. Math. Appl. 36, 31–39 (1998)MathSciNetCrossRefMATH Choo, S.M., Chung, S.K.: Conservative nonlinear difference scheme for the Cahn–Hilliard equation. Comput. Math. Appl. 36, 31–39 (1998)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Furihata, D., Matsuo, T.: A stable, convergent, conservative and linear finite difference scheme for the Cahn–Hilliard equation. Jpn. J. Ind. Appl. Math. 20, 65–85 (2003)MathSciNetCrossRefMATH Furihata, D., Matsuo, T.: A stable, convergent, conservative and linear finite difference scheme for the Cahn–Hilliard equation. Jpn. J. Ind. Appl. Math. 20, 65–85 (2003)MathSciNetCrossRefMATH
18.
Zurück zum Zitat De Mello, E.V.L., da Silveira Filho, O.T.: Numerical study of the Cahn–Hilliard equation in one, two and three dimensions. Phys. A. 347, 429–443 (2005)MathSciNetCrossRef De Mello, E.V.L., da Silveira Filho, O.T.: Numerical study of the Cahn–Hilliard equation in one, two and three dimensions. Phys. A. 347, 429–443 (2005)MathSciNetCrossRef
19.
Zurück zum Zitat Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)MathSciNetCrossRefMATH Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks Cole, Boston (2011)MATH Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks Cole, Boston (2011)MATH
21.
22.
23.
Zurück zum Zitat Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic press, London (2000)MATH Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic press, London (2000)MATH
24.
Zurück zum Zitat Wesseling, P.: Introduction to Multigrid Methods. Wiley, Chichester (1992)MATH Wesseling, P.: Introduction to Multigrid Methods. Wiley, Chichester (1992)MATH
25.
Zurück zum Zitat Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Elliott, C.M.: The Cahn–Hilliard Model for the Kinetics of Phase Separation Number 88 in International Series of Numerical Mathematics. Birkhauser, Basel (1989) Elliott, C.M.: The Cahn–Hilliard Model for the Kinetics of Phase Separation Number 88 in International Series of Numerical Mathematics. Birkhauser, Basel (1989)
27.
Zurück zum Zitat Cahn, J.W., Chow, S.N., van Vleck, E.S.: Spatially iscrete nonlinear diffusion equations. Rocky Mt. J. Math. 25(1), 87–118 (1995)CrossRefMATH Cahn, J.W., Chow, S.N., van Vleck, E.S.: Spatially iscrete nonlinear diffusion equations. Rocky Mt. J. Math. 25(1), 87–118 (1995)CrossRefMATH
28.
Zurück zum Zitat Maier, R.S., Rath, W., Petzold, L.R.: Parallel solution of large-scale differential-algebraic systems. Concurr. Comput.-Pract. E. 7(8), 795–822 (1995) Maier, R.S., Rath, W., Petzold, L.R.: Parallel solution of large-scale differential-algebraic systems. Concurr. Comput.-Pract. E. 7(8), 795–822 (1995)
29.
Zurück zum Zitat Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: MRS Proceedings, 529 pp. 39. Cambridge University Press (1998) Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: MRS Proceedings, 529 pp. 39. Cambridge University Press (1998)
30.
Zurück zum Zitat Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection-diffusion equation. Appl. Math. Comput. 113(2), 249–274 (2000)MathSciNetMATH Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection-diffusion equation. Appl. Math. Comput. 113(2), 249–274 (2000)MathSciNetMATH
31.
Zurück zum Zitat Guillet, T., Teyssier, R.: A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries. J. Comput. Phys. 230(12), 4756–4771 (2011)MathSciNetCrossRefMATH Guillet, T., Teyssier, R.: A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries. J. Comput. Phys. 230(12), 4756–4771 (2011)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Fulton, S.R., Ciesielski, P.E., Schubert, W.H.: Multigrid methods for elliptic problems: a review. Mon. Weather Rev. 114(5), 943–959 (1986)CrossRef Fulton, S.R., Ciesielski, P.E., Schubert, W.H.: Multigrid methods for elliptic problems: a review. Mon. Weather Rev. 114(5), 943–959 (1986)CrossRef
33.
Zurück zum Zitat Lee, C., Jeong, D., Shin, J., Li, Y., Kim, J.: A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Phys. A. 409(1), 17–28 (2014)MathSciNetCrossRef Lee, C., Jeong, D., Shin, J., Li, Y., Kim, J.: A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Phys. A. 409(1), 17–28 (2014)MathSciNetCrossRef
34.
Zurück zum Zitat Kim, J.: Three-dimensional numerical simulations of a phase-field model for anisotropic interfacial energy. Commun. Korean. Math. Soc. 22(3), 453–464 (2007)MathSciNetCrossRefMATH Kim, J.: Three-dimensional numerical simulations of a phase-field model for anisotropic interfacial energy. Commun. Korean. Math. Soc. 22(3), 453–464 (2007)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Kim, J.: A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl. Math. Comput. 160(2), 589–606 (2005)MathSciNetMATH Kim, J.: A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl. Math. Comput. 160(2), 589–606 (2005)MathSciNetMATH
36.
Zurück zum Zitat Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia (1977)MATH Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia (1977)MATH
37.
Zurück zum Zitat Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic press, London (2000)MATH Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic press, London (2000)MATH
38.
Zurück zum Zitat Shin, J., Jeong, D., Kim, J.: A conservative numerical method for the Cahn–Hilliard equation in complex domains. J. Comput. Phys. 230(19), 7441–7455 (2011)MathSciNetCrossRefMATH Shin, J., Jeong, D., Kim, J.: A conservative numerical method for the Cahn–Hilliard equation in complex domains. J. Comput. Phys. 230(19), 7441–7455 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations
verfasst von
Darae Jeong
Junseok Kim
Publikationsdatum
17.08.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0536-2

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe