Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

10.08.2017

An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds

verfasst von: Davide Modesti, Sergio Pirozzoli

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a semi-implicit algorithm for time-accurate simulation of compressible shock-free flows, with special reference to wall-bounded flows. The method is based on partial linearization of the convective fluxes in such a way to suppress, or at least mitigate the acoustic time step limitation. Together with replacement of the total energy equation with the entropy transport equation, this approach avoids the inversion of block-banded matrices involved in classical methods, which is replaced by much less demanding inversion of standard banded matrices. The method is extended to deal with implicit integration of viscous terms and to multiple space dimensions through approximate factorization, and used as a building block of a semi-implicit Runge–Kutta scheme which guarantees third-order of accuracy in time (Nikitin in Int J Numer Methods Fluids 51:221–233, 2006). Numerical experiments are carried out for isotropic turbulence, plane channel flow, and flow in a square duct. All available data support higher computational efficiency than existing methods, and saving of computer resources ranging from 85% under low-subsonic flow conditions (down to \(M_0 \sim 0.1\)), to about 50% in supersonic flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nikitin, N.: Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 221–233 (2006)MathSciNetCrossRefMATH Nikitin, N.: Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 221–233 (2006)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Lee, M., Moser, R.: Direct simulation of turbulent channel flow layer up to Re\(_{\tau } = 5200\). J. Fluid Mech. 774, 395–415 (2015)CrossRef Lee, M., Moser, R.: Direct simulation of turbulent channel flow layer up to Re\(_{\tau } = 5200\). J. Fluid Mech. 774, 395–415 (2015)CrossRef
4.
Zurück zum Zitat Poinsot, T., Trouve, A., Veynante, D., Candel, S., Esposito, E.: Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)CrossRef Poinsot, T., Trouve, A., Veynante, D., Candel, S., Esposito, E.: Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)CrossRef
5.
Zurück zum Zitat Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)CrossRef Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)CrossRef
6.
Zurück zum Zitat Modesti, D., Pirozzoli, S.: Reynolds and Mach number effects in compressible turbulent channel flow. Int. J. Heat Fluid Flow 59, 33–49 (2016)CrossRef Modesti, D., Pirozzoli, S.: Reynolds and Mach number effects in compressible turbulent channel flow. Int. J. Heat Fluid Flow 59, 33–49 (2016)CrossRef
7.
Zurück zum Zitat Beam, R., Warming, R.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110 (1976)MathSciNetCrossRefMATH Beam, R., Warming, R.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110 (1976)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Beam, R., Warming, R.: An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 16, 393–402 (1978)CrossRefMATH Beam, R., Warming, R.: An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 16, 393–402 (1978)CrossRefMATH
9.
Zurück zum Zitat Douglas, J.: On the numerical integration of \(\frac{\partial ^2u}{\partial x^2}+ \frac{\partial ^2 u}{\partial y^2}=\frac{\partial u}{\partial t}\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)MathSciNetCrossRef Douglas, J.: On the numerical integration of \(\frac{\partial ^2u}{\partial x^2}+ \frac{\partial ^2 u}{\partial y^2}=\frac{\partial u}{\partial t}\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)MathSciNetCrossRef
10.
Zurück zum Zitat Isaacson, E., Keller, H.: Analysis of Numerical Methods. Courier Corporation, Mineola (1994)MATH Isaacson, E., Keller, H.: Analysis of Numerical Methods. Courier Corporation, Mineola (1994)MATH
11.
Zurück zum Zitat Batista, M.: A cyclic block-tridiagonal solver. Adv. Eng. Softw. 37, 69–74 (2006)CrossRef Batista, M.: A cyclic block-tridiagonal solver. Adv. Eng. Softw. 37, 69–74 (2006)CrossRef
12.
Zurück zum Zitat Pulliam, T., Chaussee, D.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys. 39, 347–363 (1981)MathSciNetCrossRefMATH Pulliam, T., Chaussee, D.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys. 39, 347–363 (1981)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, Oxford (2007) Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, Oxford (2007)
14.
Zurück zum Zitat Pulliam, T.: Solution methods in computational fluid dynamics. In: von Karman Institute for Fluid Mechanics Lecture Series, Numerical Techniques for Viscous Flow Computations in Turbomachinery (1986) Pulliam, T.: Solution methods in computational fluid dynamics. In: von Karman Institute for Fluid Mechanics Lecture Series, Numerical Techniques for Viscous Flow Computations in Turbomachinery (1986)
15.
Zurück zum Zitat Buning, P., Jespersen, D., Thomas, H., Chan, W., Slotnick, J., Krist, S., Renze, K.: OVERFLOW User’s Manual version 1.8f, Unpublished NASA Report (1998) Buning, P., Jespersen, D., Thomas, H., Chan, W., Slotnick, J., Krist, S., Renze, K.: OVERFLOW User’s Manual version 1.8f, Unpublished NASA Report (1998)
16.
Zurück zum Zitat Cinnella, C.C.P.: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows. J. Comput. Phys. 326, 1–29 (2016)MathSciNetCrossRefMATH Cinnella, C.C.P.: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows. J. Comput. Phys. 326, 1–29 (2016)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Martín, M., Candler, G.: A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence. J. Comput. Phys. 215, 153–171 (2006)CrossRefMATH Martín, M., Candler, G.: A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence. J. Comput. Phys. 215, 153–171 (2006)CrossRefMATH
19.
Zurück zum Zitat Turkel, E.: Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)MathSciNetCrossRef Turkel, E.: Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)MathSciNetCrossRef
20.
Zurück zum Zitat Venkateswaran, S., Merkle, C.: Dual time stepping and preconditioning for unsteady computations. AIAA Paper 1995-0078 (1995) Venkateswaran, S., Merkle, C.: Dual time stepping and preconditioning for unsteady computations. AIAA Paper 1995-0078 (1995)
21.
Zurück zum Zitat Pandya, S., Venkateswaran, S., Pulliam, T.: Implementation of preconditioned dual-time procedures in overflow. AIAA paper 2003-0072 (2003) Pandya, S., Venkateswaran, S., Pulliam, T.: Implementation of preconditioned dual-time procedures in overflow. AIAA paper 2003-0072 (2003)
22.
Zurück zum Zitat Palma, P.D., Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed-boundary method for compressible viscous flows. Comput. Fluids 35, 693–702 (2006)CrossRefMATH Palma, P.D., Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed-boundary method for compressible viscous flows. Comput. Fluids 35, 693–702 (2006)CrossRefMATH
23.
Zurück zum Zitat Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp. 21(2), 441–454 (1999)MathSciNetCrossRefMATH Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp. 21(2), 441–454 (1999)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Degond, P., Tang, M.: All speed scheme for the low mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)MathSciNetCrossRefMATH Degond, P., Tang, M.: All speed scheme for the low mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Haack, J., Jin, S., Liu, J.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(04), 955–980 (2012)MathSciNetCrossRefMATH Haack, J., Jin, S., Liu, J.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(04), 955–980 (2012)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4, 1001–1012 (1984)CrossRefMATH Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4, 1001–1012 (1984)CrossRefMATH
27.
Zurück zum Zitat Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Ph.D. thesis, Citeseer (2001) Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Ph.D. thesis, Citeseer (2001)
28.
Zurück zum Zitat Wall, C., Pierce, C., Moin, P.: A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181, 545–563 (2002)MathSciNetCrossRefMATH Wall, C., Pierce, C., Moin, P.: A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181, 545–563 (2002)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)MathSciNetCrossRefMATH Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Moureau, V., Bérat, C., Pitsch, H.: An efficient semi-implicit compressible solver for large-eddy simulations. J. Comput. Phys. 226, 1256–1270 (2007)MathSciNetCrossRefMATH Moureau, V., Bérat, C., Pitsch, H.: An efficient semi-implicit compressible solver for large-eddy simulations. J. Comput. Phys. 226, 1256–1270 (2007)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Spalart, P., Moser, R., Rogers, M.: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)MathSciNetCrossRefMATH Spalart, P., Moser, R., Rogers, M.: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Sesterhenn, J.: A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2000)CrossRefMATH Sesterhenn, J.: A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2000)CrossRefMATH
33.
Zurück zum Zitat Honein, A., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)CrossRefMATH Honein, A., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)CrossRefMATH
34.
Zurück zum Zitat Salas, M., Iollo, A.: Entropy jump across an inviscid shock wave. Theor. Comput. Fluid Dyn. 8, 365–375 (1996)CrossRefMATH Salas, M., Iollo, A.: Entropy jump across an inviscid shock wave. Theor. Comput. Fluid Dyn. 8, 365–375 (1996)CrossRefMATH
35.
Zurück zum Zitat Kovásznay, L.: Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657–674 (1953)CrossRefMATH Kovásznay, L.: Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657–674 (1953)CrossRefMATH
36.
Zurück zum Zitat Steger, J.: Coefficient matrices for implicit finite difference solution of the inviscid fluid conservation law equations. Comput. Methods Appl. Mech. Eng. 13, 175–188 (1978)MathSciNetCrossRefMATH Steger, J.: Coefficient matrices for implicit finite difference solution of the inviscid fluid conservation law equations. Comput. Methods Appl. Mech. Eng. 13, 175–188 (1978)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Barth, T., Steger, J.: A fast efficient implicit scheme for the gasdynamics equations using a matrix reduction technique. AIAA paper 1985-0085 (1985) Barth, T., Steger, J.: A fast efficient implicit scheme for the gasdynamics equations using a matrix reduction technique. AIAA paper 1985-0085 (1985)
38.
39.
Zurück zum Zitat Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM, Philadelphia (1982)CrossRefMATH Vichnevetsky, R., Bowles, J.B.: Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM, Philadelphia (1982)CrossRefMATH
40.
Zurück zum Zitat Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)MathSciNetCrossRefMATH Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)MathSciNetCrossRefMATH Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123(2), 402–414 (1996)MathSciNetCrossRefMATH Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123(2), 402–414 (1996)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Bernardini, M., Pirozzoli, S., Orlandi, P.: Velocity statistics in turbulent channel flow up to Re\(_{\tau } = 4000\). J. Fluid Mech. 742, 171–191 (2014)CrossRef Bernardini, M., Pirozzoli, S., Orlandi, P.: Velocity statistics in turbulent channel flow up to Re\(_{\tau } = 4000\). J. Fluid Mech. 742, 171–191 (2014)CrossRef
46.
Zurück zum Zitat Moin, P., Verzicco, R.: On the suitability of second-order accurate discretizations for turbulent flow simulations. Eur. J. Mech. B/Fluids 55, 242–245 (2016)MathSciNetCrossRef Moin, P., Verzicco, R.: On the suitability of second-order accurate discretizations for turbulent flow simulations. Eur. J. Mech. B/Fluids 55, 242–245 (2016)MathSciNetCrossRef
47.
Zurück zum Zitat Shoeybi, M., Svärd, M., Ham, F., Moin, P.: An adaptive implicit–explicit scheme for the DNS and LES of compressible flows on unstructured grids. J. Comput. Phys. 229(17), 5944–5965 (2010)MathSciNetCrossRefMATH Shoeybi, M., Svärd, M., Ham, F., Moin, P.: An adaptive implicit–explicit scheme for the DNS and LES of compressible flows on unstructured grids. J. Comput. Phys. 229(17), 5944–5965 (2010)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Blaisdell, G., Mansour, N., Reynolds, W.: Numerical simulation of compressible homogeneous turbulence. Report TF-50, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1991) Blaisdell, G., Mansour, N., Reynolds, W.: Numerical simulation of compressible homogeneous turbulence. Report TF-50, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1991)
49.
Zurück zum Zitat Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
50.
Zurück zum Zitat Coleman, G., Kim, J., Moser, R.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)CrossRefMATH Coleman, G., Kim, J., Moser, R.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)CrossRefMATH
52.
Zurück zum Zitat Gavrilakis, S.: Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101–129 (1992)CrossRef Gavrilakis, S.: Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101–129 (1992)CrossRef
53.
Zurück zum Zitat Huser, A., Biringen, S.: Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 65–95 (1993)CrossRefMATH Huser, A., Biringen, S.: Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 65–95 (1993)CrossRefMATH
54.
Zurück zum Zitat Pinelli, A., Uhlmann, M., Sekimoto, A., Kawahara, G.: Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107–122 (2010)CrossRefMATH Pinelli, A., Uhlmann, M., Sekimoto, A., Kawahara, G.: Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107–122 (2010)CrossRefMATH
55.
Zurück zum Zitat Spalart, P.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef Spalart, P.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRef
Metadaten
Titel
An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds
verfasst von
Davide Modesti
Sergio Pirozzoli
Publikationsdatum
10.08.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0534-4

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe