Skip to main content

2017 | OriginalPaper | Buchkapitel

A Rapid Soft Computing Approach to Dimensionality Reduction in Model Construction

verfasst von : Vesa A. Niskanen

Erschienen in: Uncertainty Modeling

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A rapid soft computing method for dimensionality reduction of data sets is presented. Traditional approaches usually base on factor or principal component analysis. Our method applies fuzzy cluster analysis and approximate reasoning instead, and thus it is also viable to nonparametric and nonlinear models. Comparisons are drawn between the methods with two empiric data sets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Harman, “Modern Factor Analysis”, Univ. of Chigago Press, Chigago, 1976. H. Harman, “Modern Factor Analysis”, Univ. of Chigago Press, Chigago, 1976.
2.
Zurück zum Zitat H. Bandemer, and W. Näther, “Fuzzy Data Analysis”, Kluwer, Dordrecht, 1992. H. Bandemer, and W. Näther, “Fuzzy Data Analysis”, Kluwer, Dordrecht, 1992.
3.
Zurück zum Zitat P. Grzegorzewski, et al. (Eds.), “Soft Methods in Probability, Statistics and Data Analysis”, Physica Verlag, Heidelberg, 2002. P. Grzegorzewski, et al. (Eds.), “Soft Methods in Probability, Statistics and Data Analysis”, Physica Verlag, Heidelberg, 2002.
4.
Zurück zum Zitat M. Smithson, “Fuzzy Set Analysis for Behavioral and Social Sciences”, Springer, New York, 1986. M. Smithson, “Fuzzy Set Analysis for Behavioral and Social Sciences”, Springer, New York, 1986.
5.
Zurück zum Zitat J. Zar, “Biostatistical Analysis”, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. J. Zar, “Biostatistical Analysis”, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.
6.
Zurück zum Zitat H.-M. Lee et al., “An Efficient Fuzzy Classifier with Feature Selection Based on Fuzzy Entropy”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, pp. 426–432. H.-M. Lee et al., “An Efficient Fuzzy Classifier with Feature Selection Based on Fuzzy Entropy”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, pp. 426–432.
7.
Zurück zum Zitat T. Denoeux and M. Masson, “Principal Component Analysis of Fuzzy Data Using Autoassociative Neural Networks”, IEEE Transactions on Fuzzy Systems, vol. 12/3, pp. 336–349, 2004. T. Denoeux and M. Masson, “Principal Component Analysis of Fuzzy Data Using Autoassociative Neural Networks”, IEEE Transactions on Fuzzy Systems, vol. 12/3, pp. 336–349, 2004.
8.
Zurück zum Zitat P. Giordani and H. Giers, “A Comparison of Three Methods for Principal Component Analysis of Fuzzy Interval Data”, Computational Statistics & Data Analysis, vol. 51, 2006, pp. 379–397. P. Giordani and H. Giers, “A Comparison of Three Methods for Principal Component Analysis of Fuzzy Interval Data”, Computational Statistics & Data Analysis, vol. 51, 2006, pp. 379–397.
9.
Zurück zum Zitat A. Gonzales and R. Perez, “Selection of Relevant Features in a Fuzzy Genetic Learning Algorithm”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, pp. 417–425. A. Gonzales and R. Perez, “Selection of Relevant Features in a Fuzzy Genetic Learning Algorithm”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31/3, 2001, pp. 417–425.
10.
Zurück zum Zitat T.-P. Hong and J.-P. Chen, “Finding Relevant Attributes and Membership Values”, Fuzzy Sets and Systems 103/3, 1999, pp. 389–404. T.-P. Hong and J.-P. Chen, “Finding Relevant Attributes and Membership Values”, Fuzzy Sets and Systems 103/3, 1999, pp. 389–404.
11.
Zurück zum Zitat E. Hruschka et al., “A Survey of Evolutionary Algorithms for Clustering”, IEEE Transactions on Systems, Man and Cybernetics, Part C, 39/2, 2009, pp. 133–155. E. Hruschka et al., “A Survey of Evolutionary Algorithms for Clustering”, IEEE Transactions on Systems, Man and Cybernetics, Part C, 39/2, 2009, pp. 133–155.
12.
Zurück zum Zitat Y. Jin, “Fuzzy Modelling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement, IEEE Transactions on Fuzzy Systems, vol. 8/2, 2000, pp. 212–221. Y. Jin, “Fuzzy Modelling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement, IEEE Transactions on Fuzzy Systems, vol. 8/2, 2000, pp. 212–221.
13.
Zurück zum Zitat F. Klawonn and J. Castro, J, “Similarity in Fuzzy Reasoning” Mathware & Soft Computing, 2/3, 1995, pp. 197–228. F. Klawonn and J. Castro, J, “Similarity in Fuzzy Reasoning” Mathware & Soft Computing, 2/3, 1995, pp. 197–228.
14.
Zurück zum Zitat P. Luukka, “A New Nonlinear Fuzzy Robust PCA Algorithm and Similarity Classifier in Classification of Medical Data Sets”, Fuzzy Systems, vol. 13/3, 2011, pp. 153–162. P. Luukka, “A New Nonlinear Fuzzy Robust PCA Algorithm and Similarity Classifier in Classification of Medical Data Sets”, Fuzzy Systems, vol. 13/3, 2011, pp. 153–162.
15.
Zurück zum Zitat C.-H. Oh et al., “Fuzzy Clustering Algorithm Extracting Principal Components Independent of Subsidiary Variables”, Proceedings of the IEEE-INNS-ENNS, vol. 3, 2000, pp. 377–380. C.-H. Oh et al., “Fuzzy Clustering Algorithm Extracting Principal Components Independent of Subsidiary Variables”, Proceedings of the IEEE-INNS-ENNS, vol. 3, 2000, pp. 377–380.
16.
Zurück zum Zitat M. Rezaee and A. Moini, “Reduction Method Based on Fuzzy Principal Component Analysis in Multi-Objective Possibilistic Programming”, The International Journal of Advanced Manufacturing Technology vol. 67, 1–4, 2013, pp. 823–831. M. Rezaee and A. Moini, “Reduction Method Based on Fuzzy Principal Component Analysis in Multi-Objective Possibilistic Programming”, The International Journal of Advanced Manufacturing Technology vol. 67, 1–4, 2013, pp. 823–831.
17.
Zurück zum Zitat Y. Yaeibuuchi and J. Watada, “Fuzzy Principal Component Analysis for Fuzzy Data”, Proceedings of the Sixth IEEE International Conference, 1997, pp. 1127–1132. Y. Yaeibuuchi and J. Watada, “Fuzzy Principal Component Analysis for Fuzzy Data”, Proceedings of the Sixth IEEE International Conference, 1997, pp. 1127–1132.
18.
Zurück zum Zitat T. Yang and S. Wang, “Robust algorithms for Principal Component Analysis”, Pattern Recognition Letters, vol. 20, 1999, pp. 927–933. T. Yang and S. Wang, “Robust algorithms for Principal Component Analysis”, Pattern Recognition Letters, vol. 20, 1999, pp. 927–933.
19.
Zurück zum Zitat L. Zadeh, “Fuzzy Logic = Computing with Words”, IEEE Transactions on Fuzzy Systems, vol. 2, 1996, pp. 103–111. L. Zadeh, “Fuzzy Logic = Computing with Words”, IEEE Transactions on Fuzzy Systems, vol. 2, 1996, pp. 103–111.
20.
Zurück zum Zitat L. Zadeh, “Similarity Relations and Fuzzy Orderings”, Information Sciences, vol. 3, 1971, pp. 177–200. L. Zadeh, “Similarity Relations and Fuzzy Orderings”, Information Sciences, vol. 3, 1971, pp. 177–200.
21.
Zurück zum Zitat L. Zadeh, “Toward Extended Fuzzy Logic – A First Step”, Fuzzy Sets and Systems, vol. 160, 2009, pp. 3175–3181. L. Zadeh, “Toward Extended Fuzzy Logic – A First Step”, Fuzzy Sets and Systems, vol. 160, 2009, pp. 3175–3181.
22.
Zurück zum Zitat V. A. Niskanen, “Soft Computing Methods in Human Sciences”, Studies in Fuzziness and Soft Computing, 134, Springer Verlag, Berlin, 2004. V. A. Niskanen, “Soft Computing Methods in Human Sciences”, Studies in Fuzziness and Soft Computing, 134, Springer Verlag, Berlin, 2004.
23.
Zurück zum Zitat P. Sneath, and R. Sokal, “Numerical Taxonomy”\(,\) Freeman, San Francisco, 1973. P. Sneath, and R. Sokal, “Numerical Taxonomy”\(,\) Freeman, San Francisco, 1973.
24.
Zurück zum Zitat S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”, Journal of Intelligent and Fuzzy Systems vol. 2, 1994, 267–278. S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”, Journal of Intelligent and Fuzzy Systems vol. 2, 1994, 267–278.
25.
Zurück zum Zitat R. Yager, and D. Filev, “Generation of Fuzzy Rules by Mountain Clustering”, Journal of Intelligent and Fuzzy Systems, vol. 2, 1994, pp. 209–219. R. Yager, and D. Filev, “Generation of Fuzzy Rules by Mountain Clustering”, Journal of Intelligent and Fuzzy Systems, vol. 2, 1994, pp. 209–219.
26.
Zurück zum Zitat J. Bezdek, J. and S. Pal, “Fuzzy Models for Pattern Recognition”\(,\) IEEE Press, New York, 1992. J. Bezdek, J. and S. Pal, “Fuzzy Models for Pattern Recognition”\(,\) IEEE Press, New York, 1992.
27.
Zurück zum Zitat J. Bezdek et al., “Visual Assessment of Clustering Tendency for Rectangular Dissimilarity Matrices”, IEEE Transactions on Fuzzy Systems, vol. 15/5, 2007, pp. 890–903. J. Bezdek et al., “Visual Assessment of Clustering Tendency for Rectangular Dissimilarity Matrices”, IEEE Transactions on Fuzzy Systems, vol. 15/5, 2007, pp. 890–903.
28.
Zurück zum Zitat A. Celikyilmaz and B. Turksen, “Enhanced Fuzzy System Models with Improved Fuzzy Clustering Algorithm”, IEEE Transactions on Fuzzy Systems 16/3, 2008, pp. 779–794. A. Celikyilmaz and B. Turksen, “Enhanced Fuzzy System Models with Improved Fuzzy Clustering Algorithm”, IEEE Transactions on Fuzzy Systems 16/3, 2008, pp. 779–794.
29.
Zurück zum Zitat H. Frigui and C. Hwang, “Fuzzy Clustering and Aggregation of Relational Data with Instance-Level Constraints”, IEEE Transactions on Fuzzy Systems, vol. 16/6, 2008, pp. 1565–1581. H. Frigui and C. Hwang, “Fuzzy Clustering and Aggregation of Relational Data with Instance-Level Constraints”, IEEE Transactions on Fuzzy Systems, vol. 16/6, 2008, pp. 1565–1581.
30.
Zurück zum Zitat J. Handl and J. Knowles, “An Evolutionary Approach to Multiobjective Clustering”, IEEE Transactions on Evolutionary Computation, vol. 11/1, 2007, pp. 56–76. J. Handl and J. Knowles, “An Evolutionary Approach to Multiobjective Clustering”, IEEE Transactions on Evolutionary Computation, vol. 11/1, 2007, pp. 56–76.
31.
Zurück zum Zitat R. Hathaway and Y. Hu, “Density-Weighted Fuzzy C-Means Clustering”, IEEE Transactions on Fuzzy Systems, vol. 17/1, 2009, pp. 243–253. R. Hathaway and Y. Hu, “Density-Weighted Fuzzy C-Means Clustering”, IEEE Transactions on Fuzzy Systems, vol. 17/1, 2009, pp. 243–253.
32.
Zurück zum Zitat J. Kacprzyk, J. Owsinski, and D. Viattchenin, “A New Heuristic Possibilistic Clustering Algorithm for Feature Selection”, Journal of Automation, Mobile Robotics & Intelligent Systems vol. 8, 2, 2014, pp. 40–46. J. Kacprzyk, J. Owsinski, and D. Viattchenin, “A New Heuristic Possibilistic Clustering Algorithm for Feature Selection”, Journal of Automation, Mobile Robotics & Intelligent Systems vol. 8, 2, 2014, pp. 40–46.
33.
Zurück zum Zitat N. R. Pal et al., “A Possibilistic Fuzzy C-Means Clustering Algorithm”, IEEE Transactions on Fuzzy Systems, vol. 13/4, 2005, pp. 517–530. N. R. Pal et al., “A Possibilistic Fuzzy C-Means Clustering Algorithm”, IEEE Transactions on Fuzzy Systems, vol. 13/4, 2005, pp. 517–530.
34.
Zurück zum Zitat W. Pedrycz et al., “P-FCM: a Proximity-Based Fuzzy Clustering”, Fuzzy Sets and Systems 146/1, 2004, pp. 21–42. W. Pedrycz et al., “P-FCM: a Proximity-Based Fuzzy Clustering”, Fuzzy Sets and Systems 146/1, 2004, pp. 21–42.
35.
Zurück zum Zitat R. Hathaway and J. Bezdek, “Switching Regression Models and Fuzzy Clustering”, IEEE Transactions on Fuzzy Systems, vol. 1/3, 1993, pp. 195–204. R. Hathaway and J. Bezdek, “Switching Regression Models and Fuzzy Clustering”, IEEE Transactions on Fuzzy Systems, vol. 1/3, 1993, pp. 195–204.
36.
Zurück zum Zitat J. Kacprzyk and M. Fedrizzi, “Fuzzy regression analysis”, Physica Verlag, Heidelberg, 1992. J. Kacprzyk and M. Fedrizzi, “Fuzzy regression analysis”, Physica Verlag, Heidelberg, 1992.
37.
Zurück zum Zitat M.-S. Yang et al., “Alpha-Cut Implemented Fuzzy Algorithms and Switching Regression”, IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 38/3, 2008, pp. 588–603. M.-S. Yang et al., “Alpha-Cut Implemented Fuzzy Algorithms and Switching Regression”, IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 38/3, 2008, pp. 588–603.
38.
Zurück zum Zitat T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Transactions on Systems, Man and Cybernetics, 15/1, 1986, pp. 116–132. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Transactions on Systems, Man and Cybernetics, 15/1, 1986, pp. 116–132.
Metadaten
Titel
A Rapid Soft Computing Approach to Dimensionality Reduction in Model Construction
verfasst von
Vesa A. Niskanen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51052-1_12

Premium Partner