Skip to main content
Erschienen in: Computational Mechanics 4/2014

01.10.2014 | Original Paper

A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems

verfasst von: Eduardo Soudah, Riccardo Rossi, Sergio Idelsohn, Eugenio Oñate

Erschienen in: Computational Mechanics | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A reduced-order model for an efficient analysis of cardiovascular hemodynamics problems using multiscale approach is presented in this work. Starting from a patient-specific computational mesh obtained by medical imaging techniques, an analysis methodology based on a two-step automatic procedure is proposed. First a coupled 1D-3D Finite Element Simulation is performed and the results are used to adjust a reduced-order model of the 3D patient-specific area of interest. Then, this reduced-order model is coupled with the 1D model. In this way, three-dimensional effects are accounted for in the 1D model in a cost effective manner, allowing fast computation under different scenarios. The methodology proposed is validated using a patient-specific aortic coarctation model under rest and non-rest conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiró J (2011) Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech 44(12):2250–2258 Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiró J (2011) Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech 44(12):2250–2258
2.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. ISBN: 978-0-470-97877-1. p 404 Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. ISBN: 978-0-470-97877-1. p 404
4.
Zurück zum Zitat Cristiano A, Malossi I, Blanco PJ, Crosetto P, Deparis S, Quarteroni A (2013) Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model Simul 11(2):474–506CrossRefMATHMathSciNet Cristiano A, Malossi I, Blanco PJ, Crosetto P, Deparis S, Quarteroni A (2013) Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model Simul 11(2):474–506CrossRefMATHMathSciNet
5.
Zurück zum Zitat Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17:253–297CrossRefMATH Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17:253–297CrossRefMATH
6.
Zurück zum Zitat Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2013) Migration of a generic multi-physics framework to HPC environments. Comput Fluids 80(10):301–309CrossRefMATH Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2013) Migration of a generic multi-physics framework to HPC environments. Comput Fluids 80(10):301–309CrossRefMATH
7.
Zurück zum Zitat Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the circulatory system: a preliminary analysis. Comput Vis Sci 2:75–83CrossRefMATH Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the circulatory system: a preliminary analysis. Comput Vis Sci 2:75–83CrossRefMATH
8.
9.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582 Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582
11.
Zurück zum Zitat Ismail M, Wall WA, Gee MG (2013) Adoint-based inverse analysis of windkessel parameters for patient-specific. Vasc Models J Comput Phys 244:113170MathSciNet Ismail M, Wall WA, Gee MG (2013) Adoint-based inverse analysis of windkessel parameters for patient-specific. Vasc Models J Comput Phys 244:113170MathSciNet
12.
Zurück zum Zitat Itu L, Sharma P, Ralovich K, Mihalef V, Ionasec R, Everett A, Ringel R, Kamen A, Comaniciu D (2013) Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann Biomed Eng 41:669–681CrossRef Itu L, Sharma P, Ralovich K, Mihalef V, Ionasec R, Everett A, Ringel R, Kamen A, Comaniciu D (2013) Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann Biomed Eng 41:669–681CrossRef
13.
Zurück zum Zitat LaDisa JJ et al (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008–091017 LaDisa JJ et al (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008–091017
14.
Zurück zum Zitat LaDisa JJ, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6:432–443CrossRef LaDisa JJ, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6:432–443CrossRef
15.
Zurück zum Zitat Lantz J, Ebbers T, Engvall J, Karlsson M (2013) Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation. J Biomech 46(11):1851–1858CrossRef Lantz J, Ebbers T, Engvall J, Karlsson M (2013) Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation. J Biomech 46(11):1851–1858CrossRef
16.
Zurück zum Zitat Lorensen WE, Cline HE (1987) Marching cubes: a high reso-lution 3d surface construction algorithm. In: Proceedings of SIGGRAPH, pp 163–169 Lorensen WE, Cline HE (1987) Marching cubes: a high reso-lution 3d surface construction algorithm. In: Proceedings of SIGGRAPH, pp 163–169
17.
Zurück zum Zitat Malossi A, Blanco PJ, Crosetto P, Deparis S, Quarteroni A (2013) Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels multiscale modeling. Simulation 11(2):474–506MATHMathSciNet Malossi A, Blanco PJ, Crosetto P, Deparis S, Quarteroni A (2013) Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels multiscale modeling. Simulation 11(2):474–506MATHMathSciNet
18.
Zurück zum Zitat Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89CrossRefMATH Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89CrossRefMATH
19.
Zurück zum Zitat Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3):207–214CrossRef Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3):207–214CrossRef
20.
Zurück zum Zitat Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng, pp 0090–6964 Perdikaris P, Karniadakis GE (2014) Fractional-order viscoelasticity in one-dimensional blood flow models. Ann Biomed Eng, pp 0090–6964
21.
Zurück zum Zitat Quartapelle L (1993) Numerical solution of the incompressible Navier-Stokes equations. Birkhauser Verlag, BaselCrossRefMATH Quartapelle L (1993) Numerical solution of the incompressible Navier-Stokes equations. Birkhauser Verlag, BaselCrossRefMATH
22.
Zurück zum Zitat Raghu R, Vignon-Clementel IE, Figueroa CA, Taylor CA (2011) Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J Biomech Eng 133:081003–081011CrossRef Raghu R, Vignon-Clementel IE, Figueroa CA, Taylor CA (2011) Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J Biomech Eng 133:081003–081011CrossRef
23.
Zurück zum Zitat Ralovich K et al (2012) Hemodynamic assessment of pre-and post-operative aortic coarctation from MRI. In: Ayache N, Delingette H, Golland P, Mori K (eds) MICCAI 2012, Part II, vol 7511., LNCSSpringer, Heidelberg, pp 486–493 Ralovich K et al (2012) Hemodynamic assessment of pre-and post-operative aortic coarctation from MRI. In: Ayache N, Delingette H, Golland P, Mori K (eds) MICCAI 2012, Part II, vol 7511., LNCSSpringer, Heidelberg, pp 486–493
24.
Zurück zum Zitat Reymond P (2011) Pressure and flow wave propagation in patient-specific models of the arterial tree. PhD Thesis, École Polytechnique Fédérale de Lausanne Reymond P (2011) Pressure and flow wave propagation in patient-specific models of the arterial tree. PhD Thesis, École Polytechnique Fédérale de Lausanne
25.
Zurück zum Zitat Reymond P, Merenda F, Perren F, Rafenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1):H208– H222 Reymond P, Merenda F, Perren F, Rafenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1):H208– H222
26.
Zurück zum Zitat Sherman TF (1981) On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol 78(4):431–453 Sherman TF (1981) On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol 78(4):431–453
27.
Zurück zum Zitat Sherwin SJ, Franke V, Peiró J, Parker KH (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250CrossRefMATH Sherwin SJ, Franke V, Peiró J, Parker KH (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250CrossRefMATH
28.
Zurück zum Zitat Steele BN, Valdez-Jasso D, Haider MA, Olufsen MS (2011) Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall SIAM. J Appl Math 71(4):1123–1143MATHMathSciNet Steele BN, Valdez-Jasso D, Haider MA, Olufsen MS (2011) Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall SIAM. J Appl Math 71(4):1123–1143MATHMathSciNet
29.
Zurück zum Zitat Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116CrossRefMATH Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116CrossRefMATH
30.
Zurück zum Zitat Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323CrossRefMATH Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323CrossRefMATH
31.
Zurück zum Zitat Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2011) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31–41CrossRefMathSciNet Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2011) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31–41CrossRefMathSciNet
32.
Zurück zum Zitat Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:665– 1710 Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:665– 1710
33.
Zurück zum Zitat Torii R, Oshima M, Kobayashi T, Takagi K (2009) Fluid structure interaction modeling of blood flow and cerebral aneurysm. Comput Methods Appl Mech Eng 198:3613–3621CrossRefMATHMathSciNet Torii R, Oshima M, Kobayashi T, Takagi K (2009) Fluid structure interaction modeling of blood flow and cerebral aneurysm. Comput Methods Appl Mech Eng 198:3613–3621CrossRefMATHMathSciNet
34.
Zurück zum Zitat Vignon-Clementel IE, Figueroa AC, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796 Vignon-Clementel IE, Figueroa AC, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796
35.
Zurück zum Zitat Wang J, Parker KH (2004) Wave propagation in a model of the arterial circulation. J Biomech 37:457–470CrossRef Wang J, Parker KH (2004) Wave propagation in a model of the arterial circulation. J Biomech 37:457–470CrossRef
36.
Zurück zum Zitat Xiao N, Humphrey JD, Figueroa CA (2013) Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys 244:22–40CrossRefMathSciNet Xiao N, Humphrey JD, Figueroa CA (2013) Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys 244:22–40CrossRefMathSciNet
Metadaten
Titel
A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems
verfasst von
Eduardo Soudah
Riccardo Rossi
Sergio Idelsohn
Eugenio Oñate
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1040-2

Weitere Artikel der Ausgabe 4/2014

Computational Mechanics 4/2014 Zur Ausgabe

Neuer Inhalt