Skip to main content

2018 | OriginalPaper | Buchkapitel

A Review of the Preparation Methods of WC Powders

verfasst von : Yijie Wu, Jie Dang, Zepeng Lv, Shengfu Zhang, Xuewei Lv, Chenguang Bai

Erschienen in: TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tungsten carbides, which can be widely used for cutting and drilling tools, chemical catalyst and aerospace coatings, have attracted widespread attentions. However, the cost of conventional processes to produce tungsten carbides can be very high, therefore, there is a permanent effort to synthesize WC powder at low temperature to minimize the production cost. Some novel processing techniques have been developed to partially solve this problem. This paper reviewed the current research trends in preparation of WC containing spark plasma sintering, combustion synthesis, sol-gel and in situ carburization method, chemical vapor reaction synthesis and the spray conversion process, etc. The present review also discussed the potential applications, the feasibility, the advantages and disadvantages of industrialization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kosolapova TIA (1971) Carbides: properties, production, and applications. Chem Commun 49:11133–11148 Kosolapova TIA (1971) Carbides: properties, production, and applications. Chem Commun 49:11133–11148
2.
Zurück zum Zitat Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082CrossRef Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082CrossRef
3.
Zurück zum Zitat Bounhoure V, Lay S, Loubradou M, Missiaen J (2008) Special WC/Co orientation relationships at basal facets of WC grains in WC-Co alloys. J Mater Sci 43:892–899CrossRef Bounhoure V, Lay S, Loubradou M, Missiaen J (2008) Special WC/Co orientation relationships at basal facets of WC grains in WC-Co alloys. J Mater Sci 43:892–899CrossRef
4.
Zurück zum Zitat Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:352–374CrossRef Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:352–374CrossRef
5.
Zurück zum Zitat Einarsrud M, Hagen E, Pettersen G, Grande T (1997) Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc 80:3013–3020CrossRef Einarsrud M, Hagen E, Pettersen G, Grande T (1997) Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc 80:3013–3020CrossRef
6.
Zurück zum Zitat Jia K, Fischer TE, Gallois B (1998) Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Mater 10:875–891CrossRef Jia K, Fischer TE, Gallois B (1998) Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Mater 10:875–891CrossRef
7.
Zurück zum Zitat Schubert WD, Bock A, Lux B (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int J Refract Met Hard Mater 13:281–296CrossRef Schubert WD, Bock A, Lux B (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int J Refract Met Hard Mater 13:281–296CrossRef
8.
Zurück zum Zitat Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288CrossRef Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288CrossRef
9.
Zurück zum Zitat Shi M, Zhang W, Li Y, Chu Y, Ma C (2016) Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation. Chin J Catal 37:1851–1859CrossRef Shi M, Zhang W, Li Y, Chu Y, Ma C (2016) Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation. Chin J Catal 37:1851–1859CrossRef
10.
Zurück zum Zitat Zhu H, Sun Z, Chen M, Cao H, Li K, Cai Y, Wang F (2017) Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim Acta 236:154–160CrossRef Zhu H, Sun Z, Chen M, Cao H, Li K, Cai Y, Wang F (2017) Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim Acta 236:154–160CrossRef
11.
Zurück zum Zitat Bukola S, Merzougui B, Akinpelu A, Zeama M (2016) Cobalt and nitrogen Co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 190:1113–1123CrossRef Bukola S, Merzougui B, Akinpelu A, Zeama M (2016) Cobalt and nitrogen Co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 190:1113–1123CrossRef
12.
Zurück zum Zitat Singla G, Singh K, Pandey OP (2017) Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation. Mater Chem Phys 186:19–28CrossRef Singla G, Singh K, Pandey OP (2017) Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation. Mater Chem Phys 186:19–28CrossRef
13.
Zurück zum Zitat George M, Baker BS (1975) New materials for fluoro sulfonic acid electrolyte fuel cells. Interim report no 2, 7 March–7 November 1975 George M, Baker BS (1975) New materials for fluoro sulfonic acid electrolyte fuel cells. Interim report no 2, 7 March–7 November 1975
14.
Zurück zum Zitat Garg D, Dyer PN (1989) Tungsten carbide erosion resistant coating for aerospace components. In: MRS proceedings, vol 168 Garg D, Dyer PN (1989) Tungsten carbide erosion resistant coating for aerospace components. In: MRS proceedings, vol 168
15.
Zurück zum Zitat Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549CrossRef Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549CrossRef
16.
Zurück zum Zitat Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renew Sustain Energy Rev 75:1101–1129CrossRef Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen productiona review. Renew Sustain Energy Rev 75:1101–1129CrossRef
17.
Zurück zum Zitat Wu M, Lin X, Hagfeldt A, Ma T (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524CrossRef Wu M, Lin X, Hagfeldt A, Ma T (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524CrossRef
18.
Zurück zum Zitat Toth LE (1971) Transition metal carbides and nitrides. Academic Press Toth LE (1971) Transition metal carbides and nitrides. Academic Press
19.
Zurück zum Zitat Koc R, Kodambaka SK (2000) Tungsten carbide (WC) synthesis from novel precursors. J Eur Ceram Soc 20:1859–1869CrossRef Koc R, Kodambaka SK (2000) Tungsten carbide (WC) synthesis from novel precursors. J Eur Ceram Soc 20:1859–1869CrossRef
20.
Zurück zum Zitat Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183CrossRef Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183CrossRef
21.
Zurück zum Zitat Kanayama N, Horie Y, Nakayama Y (2007) Plasma-carburizing of tungsten with a C3H8-H2 mixed gas. ISIJ Int 33:615–617CrossRef Kanayama N, Horie Y, Nakayama Y (2007) Plasma-carburizing of tungsten with a C3H8-H2 mixed gas. ISIJ Int 33:615–617CrossRef
22.
Zurück zum Zitat Won HI, Nersisyan HH, Won CW. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides Won HI, Nersisyan HH, Won CW. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides
23.
Zurück zum Zitat Fitzsimmons M, Sarin VK (1995) Comparison of WCl6-CH4-H2 and WF6-CH4-H2 systems for growth of WC coatings. Surf Coat Technol 76–77:250–255CrossRef Fitzsimmons M, Sarin VK (1995) Comparison of WCl6-CH4-H2 and WF6-CH4-H2 systems for growth of WC coatings. Surf Coat Technol 76–77:250–255CrossRef
24.
Zurück zum Zitat Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline metals prepared by high-energy ball milling. Metall Trans A 21:2333–2337CrossRef Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline metals prepared by high-energy ball milling. Metall Trans A 21:2333–2337CrossRef
25.
Zurück zum Zitat Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166CrossRef Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166CrossRef
26.
Zurück zum Zitat Seegopaul P, Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide, US Seegopaul P, Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide, US
27.
Zurück zum Zitat Zhao J, Holland T, Unuvar C, Munir ZA (2009) Sparking plasma sintering of nanometric tungsten carbide. Int J Refractory Met Hard Mater 27:130–139CrossRef Zhao J, Holland T, Unuvar C, Munir ZA (2009) Sparking plasma sintering of nanometric tungsten carbide. Int J Refractory Met Hard Mater 27:130–139CrossRef
28.
Zurück zum Zitat Ryu T, Sohn HY, Hwang KS, Fang ZZ (2008) Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures. J Mater Sci 43:5185–5192CrossRef Ryu T, Sohn HY, Hwang KS, Fang ZZ (2008) Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures. J Mater Sci 43:5185–5192CrossRef
29.
Zurück zum Zitat Hojo J, Oku T, Kato A (1978) Tungsten carbide powders produced by the vapor phase reaction of the WCl6-CH4-H2 system. J Less Common Met 59:85–95CrossRef Hojo J, Oku T, Kato A (1978) Tungsten carbide powders produced by the vapor phase reaction of the WCl6-CH4-H2 system. J Less Common Met 59:85–95CrossRef
30.
Zurück zum Zitat Wanner S, Hilaire L, Wehrer P, Hindermann JP, Maire G (2000) Obtaining tungsten carbides from tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A Gen 203:55–70CrossRef Wanner S, Hilaire L, Wehrer P, Hindermann JP, Maire G (2000) Obtaining tungsten carbides from tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A Gen 203:55–70CrossRef
31.
Zurück zum Zitat Medeiros FFP, Oliveira SAD, Souza CPD, Silva AGPD, Gomes UU, Souza JFD (2001) Synthesis of tungsten carbide through gas–solid reaction at low temperatures. Mater Sci Eng A 315:58–62CrossRef Medeiros FFP, Oliveira SAD, Souza CPD, Silva AGPD, Gomes UU, Souza JFD (2001) Synthesis of tungsten carbide through gas–solid reaction at low temperatures. Mater Sci Eng A 315:58–62CrossRef
32.
Zurück zum Zitat Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183CrossRef Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183CrossRef
33.
Zurück zum Zitat Decker S, Löfberg A, Bastin JM, Frennet A (1997) Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures. Catal Lett 44:229–239CrossRef Decker S, Löfberg A, Bastin JM, Frennet A (1997) Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures. Catal Lett 44:229–239CrossRef
34.
Zurück zum Zitat Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renew Sustain Energy Rev 75:1101–1129CrossRef Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen productiona review. Renew Sustain Energy Rev 75:1101–1129CrossRef
35.
Zurück zum Zitat Wu Z, Yang Y, Gu D, Li Q, Feng D, Chen Z, Tu B, Webley PA, Zhao D (2009) Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small 5:2738CrossRef Wu Z, Yang Y, Gu D, Li Q, Feng D, Chen Z, Tu B, Webley PA, Zhao D (2009) Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small 5:2738CrossRef
36.
Zurück zum Zitat Ma C, Chen Z, Lin W, Zhao F, Shi M (2012) Template-free environmentally friendly synthesis and characterization of unsupported tungsten carbide with a controllable porous framework. Microporous Mesoporous Mater 149:76–85CrossRef Ma C, Chen Z, Lin W, Zhao F, Shi M (2012) Template-free environmentally friendly synthesis and characterization of unsupported tungsten carbide with a controllable porous framework. Microporous Mesoporous Mater 149:76–85CrossRef
37.
Zurück zum Zitat Cui X, Li H, Guo L, He D, Chen H, Shi J (2008) Synthesis of mesoporous tungsten carbide by an impregnation–compaction route, and its NH3 decomposition catalytic activity. Dalton Trans 6435 Cui X, Li H, Guo L, He D, Chen H, Shi J (2008) Synthesis of mesoporous tungsten carbide by an impregnation–compaction route, and its NH3 decomposition catalytic activity. Dalton Trans 6435
38.
Zurück zum Zitat Giordano C, Erpen C, Yao W, Antonietti M (2008) Synthesis of Mo and W carbide and nitride nanoparticles via a simple “urea glass” route. Nano Lett 8:4659–4663CrossRef Giordano C, Erpen C, Yao W, Antonietti M (2008) Synthesis of Mo and W carbide and nitride nanoparticles via a simple “urea glass” route. Nano Lett 8:4659–4663CrossRef
39.
Zurück zum Zitat Giordano C, Antonietti M (2011) Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today 6:366–380CrossRef Giordano C, Antonietti M (2011) Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today 6:366–380CrossRef
40.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2003) Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem Solid-State Lett 6:A53CrossRef Barker J, Saidi MY, Swoyer JL (2003) Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem Solid-State Lett 6:A53CrossRef
41.
Zurück zum Zitat Guo X, Zhu L, Li W, Yang H (2013) Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. J Adv Ceram 2:128–134CrossRef Guo X, Zhu L, Li W, Yang H (2013) Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. J Adv Ceram 2:128–134CrossRef
42.
Zurück zum Zitat Wang J, Risa Ishida A, Takarada T (2000) Carbothermal reactions of quartz and kaolinite with coal char. Energy Fuels 14:1108–1114CrossRef Wang J, Risa Ishida A, Takarada T (2000) Carbothermal reactions of quartz and kaolinite with coal char. Energy Fuels 14:1108–1114CrossRef
43.
Zurück zum Zitat Czosnek C, Janik JF, Olejniczak Z (2002) Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane). J Clust Sci 13:487–502CrossRef Czosnek C, Janik JF, Olejniczak Z (2002) Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane). J Clust Sci 13:487–502CrossRef
44.
Zurück zum Zitat Narisawa M (2008) Silicon carbide particle formation from carbon black and polymethylsilsesquioxane mixtures with melt pressing. J Ceram Soc Jpn 116:121–125CrossRef Narisawa M (2008) Silicon carbide particle formation from carbon black and polymethylsilsesquioxane mixtures with melt pressing. J Ceram Soc Jpn 116:121–125CrossRef
45.
Zurück zum Zitat Alizadeh A, Taheri-Nassaj E, Ehsani N (2004) Synthesis of boron carbide powder by a carbothermic reduction method. J Eur Ceram Soc 24:3227–3234CrossRef Alizadeh A, Taheri-Nassaj E, Ehsani N (2004) Synthesis of boron carbide powder by a carbothermic reduction method. J Eur Ceram Soc 24:3227–3234CrossRef
46.
Zurück zum Zitat Islam M, Martinez-Duarte R. A sustainable approach for tungsten carbide synthesis using renewable biopolymers Islam M, Martinez-Duarte R. A sustainable approach for tungsten carbide synthesis using renewable biopolymers
47.
Zurück zum Zitat Wang B, Tian C, Wang L, Wang R, Fu H (2010) Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 21:025606CrossRef Wang B, Tian C, Wang L, Wang R, Fu H (2010) Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 21:025606CrossRef
48.
Zurück zum Zitat Merzhanov AG (2004) The chemistry of self-propagating high-temperature synthesis. J Mater Chem 14:1779–1786CrossRef Merzhanov AG (2004) The chemistry of self-propagating high-temperature synthesis. J Mater Chem 14:1779–1786CrossRef
Metadaten
Titel
A Review of the Preparation Methods of WC Powders
verfasst von
Yijie Wu
Jie Dang
Zepeng Lv
Shengfu Zhang
Xuewei Lv
Chenguang Bai
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72526-0_80

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.