Skip to main content
Erschienen in: Computational Mechanics 4/2015

01.04.2015 | Original Paper

A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares

Erschienen in: Computational Mechanics | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that these are relative degrees-of-freedom since the rotation occurs between configurations \(\Omega _{b}\) and \(\Omega _{a}\).
 
2
Note that in this Section, and for reasons of clarity, we only consider conservative problems.
 
Literatur
1.
Zurück zum Zitat Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New YorkMATH Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New YorkMATH
2.
Zurück zum Zitat Antman SS, Marlow RS (1991) Material constraints, Lagrange multipliers, and compatibility. Arch Ration Mech Anal 116:257–299CrossRefMATHMathSciNet Antman SS, Marlow RS (1991) Material constraints, Lagrange multipliers, and compatibility. Arch Ration Mech Anal 116:257–299CrossRefMATHMathSciNet
5.
Zurück zum Zitat Areias P, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682CrossRefMATH Areias P, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682CrossRefMATH
6.
Zurück zum Zitat Areias P, César de Sá JM, Cardoso R (2014) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 18:950–973 Areias P, César de Sá JM, Cardoso R (2014) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 18:950–973
7.
Zurück zum Zitat Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary bi-dimensional finite strain cohesive crack propagation. Comput Mech 45(1):61–75CrossRefMATHMathSciNet Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary bi-dimensional finite strain cohesive crack propagation. Comput Mech 45(1):61–75CrossRefMATHMathSciNet
8.
Zurück zum Zitat Areias P, Dias-da-Costa D, Pires EB, Infante Barbosa J (2012) A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput Mech 49:545–564CrossRefMATHMathSciNet Areias P, Dias-da-Costa D, Pires EB, Infante Barbosa J (2012) A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput Mech 49:545–564CrossRefMATHMathSciNet
9.
Zurück zum Zitat Areias P, Dias-da Costa D, Pires EB, Van Goethem N (2013) Asymmetric quadrilateral shell elements for finite strains. Comput Mech 52(1):81–97CrossRefMATHMathSciNet Areias P, Dias-da Costa D, Pires EB, Van Goethem N (2013) Asymmetric quadrilateral shell elements for finite strains. Comput Mech 52(1):81–97CrossRefMATHMathSciNet
10.
Zurück zum Zitat Areias P, Dias-da Costa D, Sargado JM, Rabczuk T (2013) Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Comput Mech 52:1429–1443CrossRefMATH Areias P, Dias-da Costa D, Sargado JM, Rabczuk T (2013) Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Comput Mech 52:1429–1443CrossRefMATH
11.
Zurück zum Zitat Areias P, Garção J, Pires EB, Infante Barbosa J (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48:385–406CrossRefMATHMathSciNet Areias P, Garção J, Pires EB, Infante Barbosa J (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48:385–406CrossRefMATHMathSciNet
12.
Zurück zum Zitat Areias P, Rabczuk T (2010) Smooth finite strain plasticity with non-local pressure support. Int J Numer Methods Eng 81:106– 134MATH Areias P, Rabczuk T (2010) Smooth finite strain plasticity with non-local pressure support. Int J Numer Methods Eng 81:106– 134MATH
13.
Zurück zum Zitat Areias P, Rabczuk T, Dias da Costa D, Pires EB (2012) Implicit solutions with consistent additive and multiplicative components. Finite Elem Anal Des 57:15–31CrossRef Areias P, Rabczuk T, Dias da Costa D, Pires EB (2012) Implicit solutions with consistent additive and multiplicative components. Finite Elem Anal Des 57:15–31CrossRef
14.
Zurück zum Zitat Areias P, Rabczuk T, Dias-da Costa D (2012) Asymmetric shell elements based on a corrected updated-Lagrangian approach. Comput Model Eng Sci 88(6):475–506 Times Cited: 0MathSciNet Areias P, Rabczuk T, Dias-da Costa D (2012) Asymmetric shell elements based on a corrected updated-Lagrangian approach. Comput Model Eng Sci 88(6):475–506 Times Cited: 0MathSciNet
15.
Zurück zum Zitat Areias P, Ritto-Corrêa M, Martins JAC (2010) Finite strain plasticity, the stress condition and a complete shell model. Comput Mech 45:189–209CrossRefMATHMathSciNet Areias P, Ritto-Corrêa M, Martins JAC (2010) Finite strain plasticity, the stress condition and a complete shell model. Comput Mech 45:189–209CrossRefMATHMathSciNet
16.
Zurück zum Zitat Areias P, Song J-H, Belytschko T (2005) A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints. Int J Numer Methods Eng 64:1166–1206CrossRefMATH Areias P, Song J-H, Belytschko T (2005) A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints. Int J Numer Methods Eng 64:1166–1206CrossRefMATH
17.
Zurück zum Zitat Basar Y, Ding Y (1992) Finite rotation shell elements for the analysis of finite rotation shell problems. Int J Numer Methods Eng 34:165–169CrossRef Basar Y, Ding Y (1992) Finite rotation shell elements for the analysis of finite rotation shell problems. Int J Numer Methods Eng 34:165–169CrossRef
18.
Zurück zum Zitat Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
19.
Zurück zum Zitat Belytschko T, Wong BL (1989) Assumed strain stabilization procedure for the 9-node Lagrance shell element. Int J Numer Methods Eng 28:385–414CrossRefMATH Belytschko T, Wong BL (1989) Assumed strain stabilization procedure for the 9-node Lagrance shell element. Int J Numer Methods Eng 28:385–414CrossRefMATH
20.
Zurück zum Zitat Bonet J, Burton AJ (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp Method Appl Mech 162:151–164CrossRefMATH Bonet J, Burton AJ (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp Method Appl Mech 162:151–164CrossRefMATH
21.
Zurück zum Zitat Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18:950–973CrossRefMATH Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18:950–973CrossRefMATH
22.
Zurück zum Zitat Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed complementarity problems. Comput Optim Appl 5:97–138CrossRefMATHMathSciNet Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed complementarity problems. Comput Optim Appl 5:97–138CrossRefMATHMathSciNet
23.
Zurück zum Zitat Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35(1):63–94CrossRefMATH Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35(1):63–94CrossRefMATH
24.
Zurück zum Zitat Chróścielewski J, Makowski J, Stumpf H (1997) Finite element analysis of smooth, folded and multi-shell structures. Comp Method Appl Mech 141:1–46CrossRefMATH Chróścielewski J, Makowski J, Stumpf H (1997) Finite element analysis of smooth, folded and multi-shell structures. Comp Method Appl Mech 141:1–46CrossRefMATH
25.
Zurück zum Zitat Chroscielewski J, Witkowski W (2006) Four-node semi-EAS element in six-field nonlinear theory of shells. Int J Numer Methods Eng 68:1137–1179CrossRefMATHMathSciNet Chroscielewski J, Witkowski W (2006) Four-node semi-EAS element in six-field nonlinear theory of shells. Int J Numer Methods Eng 68:1137–1179CrossRefMATHMathSciNet
26.
Zurück zum Zitat Crisfield MA, Tan D (2001) Large-strain elasto-plastic shell analysis using low-order elements. Eng Comput 18:255–285CrossRefMATH Crisfield MA, Tan D (2001) Large-strain elasto-plastic shell analysis using low-order elements. Eng Comput 18:255–285CrossRefMATH
27.
Zurück zum Zitat Dassault Systèmes (2011) Providence. ABAQUS Documentation Dassault Systèmes (2011) Providence. ABAQUS Documentation
28.
Zurück zum Zitat Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef
29.
Zurück zum Zitat Hughes TJR, Carnoy E (1983) Nonlinear finite element formulation accounting for large membrane stress. Comp Method Appl Mech 39:69–82CrossRefMATH Hughes TJR, Carnoy E (1983) Nonlinear finite element formulation accounting for large membrane stress. Comp Method Appl Mech 39:69–82CrossRefMATH
30.
Zurück zum Zitat Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells. Part I: Three-dimensional shells. Comp Method Appl Mech 26:331–362CrossRefMATH Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells. Part I: Three-dimensional shells. Comp Method Appl Mech 26:331–362CrossRefMATH
31.
Zurück zum Zitat Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech-ASME 48(3):587–596CrossRefMATH Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech-ASME 48(3):587–596CrossRefMATH
32.
Zurück zum Zitat Ivannikov V (2014) A geometrically exact Kirchhoff-Love shell model: theoretical aspects and a unified approach for interpolative and non-interpolative approximations. PhD thesis, Instituto Superior Técnico, Avenida Rovisco Pais 1049–001 Lisbon Ivannikov V (2014) A geometrically exact Kirchhoff-Love shell model: theoretical aspects and a unified approach for interpolative and non-interpolative approximations. PhD thesis, Instituto Superior Técnico, Avenida Rovisco Pais 1049–001 Lisbon
33.
Zurück zum Zitat Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef
34.
Zurück zum Zitat Lee NS, Bathe KJ (1993) Effects of element distortions on the performance of isoparametric elements. Int J Numer Methods Eng 36:3553–3576CrossRefMATH Lee NS, Bathe KJ (1993) Effects of element distortions on the performance of isoparametric elements. Int J Numer Methods Eng 36:3553–3576CrossRefMATH
35.
Zurück zum Zitat Liu WK, Guo Y, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comp Method Appl Mech 154:69–132CrossRefMATHMathSciNet Liu WK, Guo Y, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comp Method Appl Mech 154:69–132CrossRefMATHMathSciNet
36.
Zurück zum Zitat Liu WK, Hu Y-K, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37:3263–3289CrossRefMATHMathSciNet Liu WK, Hu Y-K, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37:3263–3289CrossRefMATHMathSciNet
37.
Zurück zum Zitat Lubliner J (1990) Plasticity theory. Macmillan, New YorkMATH Lubliner J (1990) Plasticity theory. Macmillan, New YorkMATH
38.
Zurück zum Zitat MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:1–20CrossRef MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:1–20CrossRef
39.
Zurück zum Zitat Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29:483–514CrossRefMATHMathSciNet Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29:483–514CrossRefMATHMathSciNet
40.
Zurück zum Zitat Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola
41.
Zurück zum Zitat Park KC, Stanley GM (1986) A curved C0 shell element based on assumed natural-coordinate strains. J Appl Mech 53:278–290CrossRefMATH Park KC, Stanley GM (1986) A curved C0 shell element based on assumed natural-coordinate strains. J Appl Mech 53:278–290CrossRefMATH
42.
Zurück zum Zitat Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695CrossRefMATH Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695CrossRefMATH
43.
Zurück zum Zitat Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193CrossRefMATH Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193CrossRefMATH
44.
Zurück zum Zitat Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. Comput Model Eng Sci 16(2):115–130 Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. Comput Model Eng Sci 16(2):115–130
45.
Zurück zum Zitat Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548CrossRefMATHMathSciNet Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548CrossRefMATHMathSciNet
46.
Zurück zum Zitat Sansour C, Kollmann FG (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24:435–447 Sansour C, Kollmann FG (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24:435–447
47.
Zurück zum Zitat Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp Method Appl Mech 99:61–112CrossRefMATHMathSciNet Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp Method Appl Mech 99:61–112CrossRefMATHMathSciNet
48.
Zurück zum Zitat Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449CrossRefMATHMathSciNet Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449CrossRefMATHMathSciNet
49.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1989) Geometrically exact stress resultant shell models: Formulation and computational aspects of the nonlinear theory. In: Noor AK, Belytschko T, Simo JC (eds) Analytical and computational models of shells, volume 3 of CED, vol 3. ASME, San Francisco, pp 161–190 Simo JC, Fox DD, Rifai MS (1989) Geometrically exact stress resultant shell models: Formulation and computational aspects of the nonlinear theory. In: Noor AK, Belytschko T, Simo JC (eds) Analytical and computational models of shells, volume 3 of CED, vol 3. ASME, San Francisco, pp 161–190
50.
Zurück zum Zitat Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York (Corrected Second Printing edition) Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York (Corrected Second Printing edition)
51.
Zurück zum Zitat Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comp Method Appl Mech 51:177–208CrossRefMATHMathSciNet Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comp Method Appl Mech 51:177–208CrossRefMATHMathSciNet
52.
Zurück zum Zitat Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, New YorkCrossRef Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, New YorkCrossRef
53.
Zurück zum Zitat Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRefMATH Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRefMATH
54.
Zurück zum Zitat Wagner W, Klinkel S, Gruttmann F (2002) Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Comput Struct 80:857–869CrossRef Wagner W, Klinkel S, Gruttmann F (2002) Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Comput Struct 80:857–869CrossRef
55.
Zurück zum Zitat Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp Method Appl Mech 79:173–202CrossRefMATH Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp Method Appl Mech 79:173–202CrossRefMATH
56.
Zurück zum Zitat Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer models in structural mechanics. Academic Press, New York, pp 43–57CrossRef Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer models in structural mechanics. Academic Press, New York, pp 43–57CrossRef
57.
Zurück zum Zitat Wolfram Research Inc. (2007) Mathematica, Version 6.0, Champaign Wolfram Research Inc. (2007) Mathematica, Version 6.0, Champaign
Metadaten
Titel
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
Publikationsdatum
01.04.2015
Erschienen in
Computational Mechanics / Ausgabe 4/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1130-9

Weitere Artikel der Ausgabe 4/2015

Computational Mechanics 4/2015 Zur Ausgabe

Neuer Inhalt